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When feasible, learning is a very attractive alternative to explicit pro- 
gramming. This is particularly true in areas where the problems do not 
lend themselves to systematic programming, such as pattern recogni- 
tion in natural environments. The feasibility of learning an unknown 
function from examples depends on two questions: 

1. Do the examples convey enough information to determine the 

2. Is there a speedy way of constructing the function from the ex- 

These questions contrast the roles of information and complexity 
in learning. While the two roles share some ground, they are concep- 
tually and technically different. In the common language of learning, 
the information question is that of generalization and the complex- 
ity question is that of scaling. The work of Vapnik and Chervonenkis 
(1971) provides the key tools for dealing with the information issue. In 
this review, we develop the main ideas of this framework and discuss 
how complexity fits in. 

function? 

amples? 

1 Introduction 

We start by formalizing a simple setup for learning from examples. We 
have an environment such as the set of visual images, and we call the 
set X .  In this environment we have a concept defined as a function 
f : X + (0, l}, such as the presence or absence of a tree in the image. 
The goal of learning is to produce a hypothesis, also defined as a function 
g :  X + (0, l}, that approximates the concept f ,  such as a pattern recog- 
nition system that recognizes trees. To do this, we are given a number 
of examples (21, f h l ) ) ,  . . . , ( x N ,  f ( x N ) )  from the concept, such as images 
with trees and images without trees. 

In generating the examples, we assume that there is an unknown 
probability distribution I' on the environment X .  We pick each example 
independently according to this probability distribution. The statements 
in the paper hold true for any probability distribution P, which sounds 
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very strong indeed. The catch is that the same P that generated the 
example is the one that is used to test the system, which is a plausible 
assumption. Thus, we learn the tree concept by being exposed to "typi- 
cal" images. While X can be finite or infinite (countable or uncountable), 
we shall use a simple language that assumes no measure-theoretic com- 
plications. 

The hypothesis g that we produce approximates f in the sense that 
g would rarely be significantly different from f (Valiant 1984). This def- 
inition allows for two tolerance parameters c and 6. With probability 
2 1 - 6, g will differ from ,f at most e of the time. The 6 parameter pro- 
tects against the small, but nonzero, chance that the examples happen to 
be very atypical. 

A learning algorithm is one that takes the examples and produces the 
hypothesis. The performance is measured by the number of examples 
needed to produce a good hypothesis as well as the running time of the 
algorithm. 

2 Generalization 

We start with a simple case that may look at first as having little to do 
with what we think of as generalization. Suppose we make a blind guess 
of a hypothesis g, without even looking at any examples of the concept 
f .  Now we take some examples of f and test g to find out how well it 
approximates f .  Under what conditions does the behavior of g on the 
examples reflect its behavior in general? 

This turns out to be a very simple question. On any point in X ,  f 
and y either agree or disagree. Define the agreement set 

A = { x  E X : f ( s )  = y(r)}. 

The question now becomes: How does the frequency of the examples in 
A relate to the probability of A? Let i7 be the probability of A, i.e., the 
probability that f (.c) = g(.r) on a point z picked from X according to the 
probability distribution P. We can consider each example as a Bernoulli 
trial (coin flip) with probability i-r of success ( f  = g )  and probability 1 - i7 

of failure (f # 9). 
With ,li examples, we have A' independent, identically distributed, 

Bernoulli trials. Let n be the number of successes (71 is a random variable), 
and let v = 71/N be the frequency of success. Bernoulli's theorem states 
that, by taking N sufficiently large, v can be made arbitrarily close to T 

with very high probability. In other words, if you take enough examples, 
the frequency of success will be a good estimate of the probability of 
success. 

Notice that this does not say anything about the probability of success 
itself, but rather about how the probability of success can be estimated 
from the frequency of success. If on the examples we get 90% right, we 
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should get about 90% right overall. If we get only 10% right, we should 
continue to get about the same. We are only predicting that the results of 
the experiment with the examples will persist, provided there are enough 
examples. 

How does this case relate to learning and generalization? After all, 
we do not make a blind guess when we learn, but rather construct a 
hypothesis from the examples. However, at  a closer look, we find that 
we make a guess, not of a hypothesis but of a set of hypotheses. For 
example, when the backpropagation algorithm (Rumelhart et al .  1986) is 
used in a feedforward network, we are implicitly guessing that there is 
a good hypothesis among those that are obtained by setting the weights 
of the given network in some fashion. The set of hypotheses G would 
then be the set of all functions y that are obtained by setting the weights 
of the network in any fashion. 

Therefore, when learning deals with a limited domain of represen- 
tation, such as a given network with free weights, we in effect make a 
guess G of hypotheses. The learning algorithm then picks a hypothesis 
g E G that mostly agrees with f on the examples. The question of gener- 
alization now becomes: Does this choice, which is based on the behavior 
on the examples, hold in general? 

We can approach this question in a way similar to the previous case. 
We define, for every y E G, the agreement set 

A, = { x  E X I j ( x )  = g(.r)}. 

These sets are different for different gs. Let 7rg be the probability of A,, 
i.e., the probability that j ( s )  = g(a)  on a point 5 picked from X according 
to the probability distribution P, for the particular g E G in question. 
We can again define random variables rig (the number of successes with 
respect to different gs) and the frequencies of success ug = n,,/N. At this 
point the problem looks exactly the same as the previous one and one 
may expect the same answer. 

There is one important difference. In the simple Bernoulli case, the 
issue was whether u converged to K .  In the new case, the issue is whether 
the u?)s converge to the rigs in a uniform manner as N becomes large. In 
the learning process, we decide on one y but not the other based on the 
values of vg. If we had the vgs converge to the K,S, but not in a uniform 
manner, we could be fooled by one erratic g. For example, we may 
be picking the hypothesis g with the maximum ug. With nonuniform 
convergence, the y we pick can have a poor K ~ .  We want the probability 
that there is some g E G such that ug differs significantly from 7rg be very 
small. This can be expressed formally as 

r 1 

where sup denotes the supremum. 
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3 The V-C Dimension 

A condition for uniform convergence, hence generalization, was found 
by Vapnik and Chervonenkis (1971). The key is the inequality 

Pr sup Iv,, - ~ , , 1  > f 5 4rn(2,Y)r~””~*. I q E ( :  I 
where 7rt is a function that depends on G. We want the right-hand side 
of the inequality to be small for large N ,  in order to achieve uniform 
convergence. The factor , - f2N /8  is very helpful, since it is exponentially 
decaying in A’. Unless the factor rtt(2ll’) grows too fast, we should be 
OK. For example, if rr~(2~V) is polynomial in the right-hand side will 
go to zero as N goes to infinity. 

What is the function r t t?  It depends on the set of hypotheses G. In- 
tuitively, nr(,V) measures the flexibility of G in expressing an arbitrary 
concept on examples. For instance, if G contains enough hypotheses 
to be able to express any concept on 100 examples, one should not really 
expect any generalization with only 100 examples, but rather a memo- 
rization of the concept on the examples. On the other hand, if gradually 
more and more concepts cannot be expressed by any hypothesis in G 
as N grows, then the agreement on the examples means something, and 
generalization is probable. Formally, rn(,V) measures the maximum num- 
ber of different binary functions on the examples .rl ~ . . . . X,V induced by 
the hypotheses yl,,q2. E C:. 

For example, if X is the real line and G is the set of rays of the form 
.I 5 ( t ,  i.e., functions of the form 

then r r i ( N )  = N + 1. The reason is that on I” points one can define only 
N + 1 different functions of the above form by sliding the value of (I from 
left of the leftmost point all the way to right of the rightmost point. 

There are two simple facts about the function rn. First, rrt(N) 5 IGl 
(where I I denotes the cardinality), since G cannot induce more functions 
that it has. This fact is useful only when G is a finite set of hypotheses. 
The second fact is that r i t ( N )  5 2’, since G cannot induce more binary 
functions on ,V points than there are binary functions on N points. In- 
deed, there are choices of G (trivially the set of all hypotheses on X )  for 
which r r J ( A 7  = 2.‘. For those cases, the V-C inequality does not guarantee 
uniform convergence. 

The main fact about r t t ( S )  that helps the characterization of G as far 
as generalization is concerned is that n t ( S )  is either identically equal 
to 2’ for all AT, or else is bounded above by N” + 1 for a constant d.  
This striking fact can be proved in a simple manner (Cover 1965; Vapnik 
and Chervonenkis 1971). The latter case implies a polynomial r r r ( h r )  
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and guarantees generalization. The value of rl matters only in how fast 
convergence is achieved. This is of practical importance because this 
determines the number of examples needed to guarantee generalization 
within given tolerance parameters. 

The value of d turns out to be the smallest N at which C starts failing 
to induce all possible 2N binary functions on any N examples. Thus, 
the former case can be considered the case d = m. d is called the V-C 
dimension (Baum and Haussler 1989; Blumer et al. 1986). 

4 Interpretation 

Training a network with a set of examples can be thought of as a process 
for selecting a hypothesis g with a favorable performance on the exam- 
ples (large u,J from the set G. Depending on the characteristics of G, 
one can predict how this performance will generalize. This aspect of the 
characteristics of G is captured by the parameter (1, the V-C dimension. 
If the number of examples N is large enough with respect to d, general- 
ization is expected. This means that maximizing v!, will approximately 
maximize rII, the real indicator of how well the hypothesis approximates 
the concept. 

In general, the more flexible (expressive, large) C is, the larger its V-C 
dimension (1. For example, the V-C dimension of feedforward networks 
grows with the network size (Baum and Haussler 1989). For example, 
the total number of weights in a one-hidden-layer network is an approxi- 
mate lower bound for the V-C dimension of the network. While a bigger 
network stands a better chance of being able to implement a given func- 
tion, its demands on the number of examples needed for generalization 
is bigger. These are often conflicting criteria. The V-C dimension indi- 
cates only the likelihood of generalization. This means, for better or for 
worse, whether the behavior on the examples is going to persist. The 
ability of the network to approximate a given function in principle is a 
separate issue. 

The running time of the learning algorithm is a key concern (Judd 
1988; Valiant 1984). As the number of examples increases, the running 
time generally increases. However, this dependency is a minor one. Even 
with few examples, an algorithm may need an excessive amount of time 
to manipulate the examples into a hypothesis. The independence of 
this complexity issue from the above discussion regarding information is 
apparent. Without a sufficient number of examples, no algorithm slow or 
fast can produce a good hypothesis. Yet a sufficient number of examples 
is of little use if the computational task of digesting the examples into a 
hypothesis proves intractable. 
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