
JOURNAL OF COMPLEXITY 6, 192-198 (l%JO)

Learning from Hints in Neural Networks*

YASER S. ABU-MOSTAFA

Departments of Electrical Engineering and Computer Science,
California Institute of Technology, Pasadena, California 91125

Received April 3, 1989

Learning from examples is the process of taking input-output examples of an
unknown function f and infering an implementation off. Learning from hints
allows for general information about f to be used instead of just input-output
examples. We introduce a method for incorporating any invariance hint about f in
any descent method for learning from examples. We also show that learning in a
neural network remains NP-complete with a certain, biologically plausible, hint
about the network. We discuss the information value and the complexity value of
hints. B 1990 Academic Press, Inc.

1. INTRODUCTION

We can think of learning from examples as one end of a spectrum
whose other end is explicit programming. Between these two extremes,
there is a spectrum of largely unexplored possibilities.

To explain what we mean, let us assume that we have a decision func-
tionf: X + (0, 1) that we wish to implement; for instance, the primality
problem where X = { 1, 2, 3, . . .} and f(x) = 1 iff x is a prime, or the
problem of recognizing a tree in an image where X is a set of images and
f(x) = 1 iff x contains a tree. The goal is to come up with an implementa-
tion off. We can write a simple program for fin the primality problem.
However, the lack of a mathematical understanding off in the image
recognition problem forces us to seek other approaches. One approach is
learning from examples, where we use a ‘learning process’ that we
present with examples of images with trees and images without trees until

* Presented in part at the Third Symposium on Complexity of Approximately Solved
Problems, April 3, 1989. Research supported by the Air Force Office of Scientific Research
under Grant AFOSR-88-0213.

192
0885-064x/90 $3.00
Copyr@ht 0 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved.

LEARNING FROM HINTS IN NEURAL NETWORKS 193

the process infers an implementation off. Whenever we have an effective
process for learning from examples, it is tantamount to automated pro-
gramming. The process is a mechanical means of producing an implemen-
tation off.

When feasible, learning from examples is a very convenient approach.
It does not require any knowledge off, just input-output examples. In
many practical situations, we do have some knowledge of J In these
cases, it would be inefficient to take blind examples without taking advan-
tage of what we already know about f This gives rise to learning from
hints as opposed to learning from examples. Learning from hints is still a
learning process, since we do not know enough about f to program it
outright.

A hint is any piece of information about J As a matter of fact, an input-
output example is a special case of a hint. A hint may take the form of a
global constraint onJ such as a symmetry property or an invariance. It
may also be partial information about the implementation off.

A hint may be valuable to the learning process in two ways. It may
reduce the number of functions that are candidates to be f (information
value), and may reduce the number of steps needed to find the implemen-
tation off (complexity value). For illustration, suppose we are learning
about an unknown integer N (lo5 < N < 106) and we want to represent it
as a six-digit number. Which is a more valuable hint: The number is a
prime or The most significant digit is 7? Although the first hint has more
information value, it may have less complexity value because it does not
reduce the search space in a way that is easily compatible with the desired
representation.

We shall report a positive result and a negative result in this paper. The
positive result is a technique that incorporates any invariance hint in any
descent technique for learning. The negative result is that general learning
in neural networks remains NP-complete even with a hint that is biologi-
cally plausible. This paper provides a preliminary treatment of the subject
of hints; many directions of investigation warrant further exploration.

For completeness, we briefly introduce feedforward neural networks
and their gradient descent learning. A single-output feedforward neural
network (Fig. 1) is a combinatorial circuit organized in layers of units
(neurons). Each neuron performs a threshold function 0(XjwjUj - t),
where {Uj} are the inputs to the neuron, {wj} are real numbers (weights), t
is a real number (threshold), and 8 is a ‘sigmoid’ function (soft or hard)
that varies between - 1 and + 1 monotonically (the binary convention is
+l instead of 0, 1).

For any set of values for the weights and the thresholds, the network
output y is a fixed function of the input variables x = x1, . . . , x,,,. In order
to make the network implement a function f(x), we need to choose the

194 YASER S. ABU-MOSTAFA

FIG. 1. Feedforward neural network.

weights and the thresholds such that the actual output y and the desired
outputf(x) are as close as possible. A gradient descent method for learn-
ingffrom examples minimizes (y - f(x))* for each example by perturbing
the weights and thresholds. The formula for perturbing the weights is

Awi m - & (Y - f(X)>* = -2(y -f(X)) -j$.

When this formula is applied to the neurons of a feedforward network, the
resulting rule is the backpropagation algorithm of Werbos, described in
(Rumelhart , Hinton, and Williams, 1986).

2. INVARIANCE HINTS

Many of the hints we have in pattern recognition problems are invari-
ance hints. A hand written letter S can be deformed in many ways without
losing its identity. Properties such as shift invariance, scale invariance,
and rotation invariance are commonplace in image recognition.

An invariance property can be formalized as a set Oe of subsets A C X
such that if x1, x2 E A, thenf(x,) = f&2). Thusf is invariant within each
set A E Se. Interesting invariances are usually common to many functions
fon the same domain X. For example, if X is the set of images, many
recognition functions share some form of scale invariance. In this case,
each set A E ~4 consists of images which are scaled versions of one
another.

How can the invariance hint help the learning process? One way is to
incorporate the hint directly in the implementation. For illustration, con-
sider the implementation of a function f: {- 1, + l}N + {- 1, + l} on a

LEARNING FROM HINTS IN NEURAL NETWORKS 195

FIG. 2. Network for even functions.

feedforward neural network. If we know that f is an even function, i.e.,
fh, x2, * . * 7 XN) =A-Xl, -x2, * * . 7 -xN), we can incorporate this hint
in the network as shown in Fig. 2.

Each input Xi is applied to two sets of neurons, with one set implement-
ing the dual functions of the other set. The dual off(xr, x2, . . . , XN) is
definedas -f(-xl, -x2,. . . , -xN), and can be implemented by using the
same weights and the negative of threshold used to implement 5 The
outputs of the two dual neurons are then combined into the neurons of the
next layer using a weight and its negative. From then on, the function
implemented by the network is forced to be even in the variables x1, . . . ,
XN. These constraints on the neurons of the first two layers must be taken
into consideration in the learning process when examples offare given.
For instance, if we apply gradient descent, we cannot treat all the weights
as independent variables any more.

Being an even function is much simpler than the invariance hints we are
likely to encounter in pattern recognition. It may not be as easy to come
up with a structure of the network that automatically guarantees a compli-
cated invariance, such as elastic deformation. We will develop a unified
method for incorporating any invariance, not in the structure of the net-
work, but rather in the gradient descent method itself.

The key idea is expressing the hint itself as a set of examples. Suppose
we are dealing with a function? { - 1, + l}N 3 { - 1, + I}, which is invariant
under cyclic shift of the input bits, e.g., f(x) = f(x2), where

x1 = -1-l +1+1-1+1-1+1-l-l-l-1,

x2 = -1-l -1-l +1+1-1+1-1+1-l-1.

The conditionf(xi) = f(x~) is an example of the hint as much asf(x) = + 1
would be an example of the function. Just likef(x) = + 1 can be enforced
as a minimization of (y - 1)2, where y is the output of the network when

196 YASER S. ABU-MOSTAFA

the input is x&x,) = f(x2) can be enforced as a minimization of (yr - y#,
where y1 and y2 are the outputs of the network when the inputs are x1 and
x2, respectively. The gradient descent perturbation of the weights in this
case would be

Awix-- a;, (Yl - Y212 = -2(y1 - Y2) ($ - j$),
I I I

which is similar to the perturbation due to two examples off.
The same idea is valid for all invariances and all descent techniques. It

makes it possible to incorporate in a regular algorithm for learning from
examples what would otherwise be a hard-to-implement invariance. The
initial layers of the network can be dedicated to learning the invariance
(the learning counterpart of the approach of Fig. 2).

A look at the expression for Awi reveals that we do not need the actual
value offin order to compute the perturbation of the weights due to an
example of the invariance hint. This makes it possible to generate an
arbitrary number of (possibly artificial) examples of the hint for the leam-
ing process without having to compute f (or even without the need to
know whichfwe are learning). Such resource may be valuable if we have
a limited number of natural examples off.

This observation can be formalized within the framework of Vapnik
and Chervonenkis (1971). If the set of candidate functions is significantly
reduced by the constraint that they must satisfy the invariance property,
the number of examples off needed for the learning process decreases
accordingly (Abu-Mostafa, 1989).

3. COMPLEXITY ISSUES

The process of learning an unknown function fin a feedforward net-
work can be considered a search in Euclidean space for a set of weights
and thresholds that implements the function. Indeed, if the domain of
functions and networks is not restricted, the learning problem is NP-
complete (Judd, 1988). Other, apparently simplistic, learning problems
have also been shown to be NP-complete (Valiant, 1984).

Does the incorporation of hints in the learning process reduce the time
complexity of learning? It is plausible that a hierarchical decomposition of
the search space that results from learning different hints independently
will reduce the search time. However, we were unable to show a mean-
ingful instance of a hint that rendered an NP-complete learning problem
polynomial-time. We will report on an interesting hint that did not change
the NP-completeness of the problem.

LEARNING FROM HINTS IN NEURAL NETWORKS 197

progression
modulus of positive

1 weights

(4 04
fixed signs fixed moduli

FIG. 3. Simulating arbitrary weights.

Consider the general problem of learning in a feedforward network with
hard thresholds. Assume that, as part of the input to the learning process,
we are given the signs of a set of weights that does implement the function
in question. This hint is biologically motivated. In actual neurobiological
systems, certain synapses are predisposed to be inhibitory and others to
be excitory. Only the magnitude of the weight, not the sign, is left to the
learning process.

The problem remains NP-complete as it turns out to be polynomially
related to the old problem. To see this, we replace each synapse of the old
network by the subnetwork of Fig. 3a. There are clearly choices of the
weights with the prescribed signs that leads to an arbitrary equivalent
weight for the original synapse.

It is interesting to note that the problem also remains NP-complete if we
are given the absolute values of the weights and need only to find the
signs! The reason is that each synapse can be replaced by the subnetwork
of Fig. 3b. The prescribed moduli of the weights in this subnetwork can be
given a pattern of signs that leads to an arbitrary equivalent weight (of
finite accuracy) for the original synapse. Since we never need more than a
polynomial number of bits for the weight (Hong, 1987), the polynomial
equivalence is established.

4. CONCLUSION

Hints are pieces of information about an unknown function that we
wish to learn, ranging from input-output examples to a complete imple-
mentation of the function. Invariance hints can be incorporated into
descent methods of learning from examples, with possible gains in infor-
mation and complexity. Certain strong hints do not change the NP-com-
pleteness status of learning.

198 YASER S. ABU-MOSTAFA

Several directions of investigating the subject of hints remain open: to
name a few, the compatibility of the hints with the desired implementation
off and with each other and how this affects their complexity value, the
quantification of the information value of a hint in terms of the change in
the V-C dimension, and finding natural examples of NP-complete learn-
ing problems that become polynomial-time using plausible hints.

ACKNOWLEDGMENT

I thank Dr. Robert Snapp for his assistance.

REFERENCES

ABU-MOSTAFA, Y. S. (1988), Random problems, .I. Complexity 4, 277-284.

ABU-MOSTAFA, Y. S. (1989), The Vapnik-Chervonenkis dimension: Information versus
complexity in learning, Neurnl Comput. 1.

HONG, J. (1987), “On Connectionist Models,” Technical Report (Computer Science), Uni-
versity of Chicago, Chicago, IL.

JUDD, J. S. (1988), On the complexity of loading shallow neural networks. J. Complexity 4,
177-192.

RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. (1986), Learning internal repre-
sentations by error propagation, in “Parallel Distributed Processing” (D. E. Rumelhart
er al., Eds.), Vol. 1,” pp. 318-362, MIT Press, Cambridge, MA.

VALIANT, L. G. (1984), A theory of the learnable, Commun. ACM 27, 1134-I 142.
VAPNIK, V. N., AND CHERVONENKIS, A. (1971) On the uniform convergence of relative

frequencies of events to their probabilities, Theory Probab. Appf. 16, 264-280.

