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Abstract

The maximum drawdown at time 7 of a random process on [0, T'] can be defined
informally as the largest drop from a peak to a frough. In this paper, we investigate
the behaviour of this statistic for a Brownian motion with drift. In particular, we give
an infinite series representation of its distribution and consider its expected value. When
the drift is zero, we give an analytic expression for the expected value, and for nonzero
drift, we give an infinite series representation. For all cases, we compute the limiting
(T — 60) behaviour, which can be logarithmic (for positive drift), square root (for zero
drift) or linear (for negative drift).
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1. Introduction

The maximum drawdown is commonly used in finance as a measure of risk for a stock that
follows a particular random process. Here we consider the maximum drawdown of a Brownian
motion. Let W(¢), 0 < r < T, be a standard Wiener process and let X(z) be the Brownian
motion given by X (t) = o W(#) + put, where u € R is the drift and ¢ > 0 is the diffusion
parameter. The high H, the low L and the range R of X are defined by

H= sup X(1), L= inf X(), R=H L.
+€[0,T1] te[0,T]

The maximum drawdown is defined by

D=D(T;p 0)= sup [ sup X(s) — X(t)].
tel0,T1 s€[0,¢]
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148 M. MAGDON-ISMAIL ET AL.
Denote the distribution function for D by Gp(h) = P[D > h]. We will show that

0o . 242 2
0, sin6, wuh o6, T uT
o — 4 " - I add 1— _ n —
GD( ) 20 '20'403-’-“2112 _02uh CXP{ 02 }( CXP{‘ 2h2 }CXP{ 202 })

+ M, 1)

where, for n > 1, 6, is the positive solution of the eigenvalue condition

2 o
tan6, = 9, @)
uh
and M is given by
o2
O, . 5
. n<—
3 uT ‘ o2
M = - 1 — —_—— s = -, 3
T g0
204n\sinhnexp{—uh/02} l—e uxr . a?n®T o o?
— €X] - X] ) 5
o4n? — u2h? + o2ph P17 262 [P 22 =7
where 7 is the unique positive solution of
2
tanhn = U—n. 4
uh

Using the identity E[D] = f0°° di G j5(h) and defining o = u+/T /202, we find that

2
E[D] = 2—"-—Q5(a2), ()
M
where
Op(x), wn>0,
0p() ={vv2x, p=0,
—0On(x), n<0,

with y = /n/8 = 0.6267 a constant, and Qp and @, functions whose exact expressions
are given in (12) and (10) respectively. These functions can be evaluated numerically (a
comprehensive list of values is given in Table 1 below), and their asymptotic behaviour is
given by

0.(x) —> y/2x, x— 07t
P Ylogx +0.49088, x — oo,
y/2x, x — 0T,

x) —
On() {x + %, x — 00.

The asymptotic behaviour is logarithmic for & > 0, linear for u < Oand sqﬁare root for . == 0.
A similar result in the asymptotic case was obtained by Berger and Whitt [1]. For positive u,
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FIGURE 1: Behaviour of Q j(-) for positive, negative and zero p.

using a reflected Brownian motion [8], they considered the asymptotic distribution of queueing
processes and obtained a Gumbel distribution, which is consistent with our findings. Douady
" et al. [5] considered the maximum drawdown for a Brownian motion when the drift is zero
and obtained similar results to ours in this special case. The behaviour of Q ;(-) is shown in
Figure 1.

2. Derivations

Let D(t), t € [0, T], be the random process defined by

D)= sup X(s) — X(2).
s€l0,1]

Then D(¢) is the drawdown from the previous maximum value at time ¢. It is well known that
D) is a reflected Brownian motion on [0, T},

—dX(), D) > 0,

max{0, —dX(t)}, D@) =0. ©

dD(t) = {

(If X (¢) has drift and diffusion parameters p.x and o, then D(¢) is a Brownian motion with drift
—ux and diffusion parameter o; D(0) = 0 and D(¢) has a reflective barrier at 0.) A rigorous
justification of (6) can be found in [8]. From D(¢), we can get the maximum drawdown,
D= sup, .7 D(t). Let h > 0 be an absorbing barrier, let 7 be the absorption time and let f; be
the absorbtion time density, i.e. f; (¢ | h)dt is the probability that T € [z, + dt]. Let G )
be the probability that D > h in the interval [0, T]. Then

T
Gph) =f0 dz f (¢ | b). M
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The absorption time density f;(¢ | ) can be computed from a more general result for a
Brownian motion between two partly absorbing barriers given in [4], and is given by

2
£t 1 B) =exp{—;‘—aé}

2 X 452 25,2 O 242
6, 6, h 0st
fof ((76’,,—|—,u,h)nsm,,eXp M exp o0y vkl ®
h? - o402 + u?h? — o2uh o 2h?2

where 0, is the positive solution to the eigenvalue condition (2), K is given by

[0 o’
< =,
3 ,/L h
302 o?
K={—"_ = 9
1 2e52’ p=ss ©)
o2 (u?h? — 5*p?)nsinh g wh N o2n?t - o?
h? o%n? — u2h? + o2uh o2 T

and 7 is the unique positive solution to the eigenvalue condition (4). Alternatively, in Section 3,
we will obtain the same result by taking the continuous limit of the discrete random walk.

Substituting (8) into (7), and after an integration, we arrive at (1). To get the expectation (5), we

use the identity E[D] = f;° dh G ;(h), which is valid for positive-valued random variables.

21. Case u =0
In this case, the eigenvalue condition (2) is solved by 6, = (n — %)n. Thus,

i sin(n—%)n( { oz(n—%)27r2T})
Grh)y =2 — = {1- - 27"

e e U
_2 ( h )
7 \aovT )’

where
o~ (=" (n+5)?
g(x) :;n_l— % (1 —exp{———2x22—}).

The expected value of D is then given by

E[D] = f dh G j(h)
0 \

()
= — dh
T Jo & woJT
=2yaﬁ,

where o .
. B3

x
y = f dh g(h) = /7/8 ~ 0.6267.
. 0
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" The éxact computation of y from the integral

f ” dhghy
0

"is challenging. An alternate route to the same expression using reflected Brownian motion was
obtained by Bond [3], who showed that y = /7 /8. A useful comparison is to the expected
value of the range R, the difference between the two extrema of the motion. The range R is
computed for 4 = 0 in [6], and the generalization to nonzero p can be obtained from (29)
in Appendix A and the identity E[R] = E[H | u]l + E[H | — ], where H is the maximum
of the motion. For u = 0, E[R] = 2«/2/110\/7 and /2/m & 0.798 > y; thus the expected
range is considerably larger than the expected maximum drawdown for & = 0.

22, Caseup <0

After applying the eigenvalue conditions and taking the integral of G j; (k) to get the expec-
tation, we find that

E[D] = f dh G5 (h)
0

[o2]

00 3 2
uh sin” 8, w“T
=2 dnexp{-31Y (1 _expl- 1)
/0 exp{ o2 ] 6, — cos 6, sin 6, ( exp{ 202cos2 6, })

n=1

Making a change of variables to ¥ = —uh/a?, we find that

2
E[D] = —27- 0n(a?),
N

where, for x > 0,

o= [ a 25 P T RO (10)
= € — {1 —expi—— ).
ot 0 “ ~ 6, — c0s Oy, sin 4, P17 Cos? O,

Here, each 0, satisfies tan6, = —6,/u and o = u+/T/202. The numerical computation of
Qu(x) is not a straightforward task. The sum in the integrand is a function of u that decreases
faster than e . Since the magnitude of the nth term in the sum is approximately 1/n, we
need to take 2(e*) terms in the sum to make sure that the next term left out has magnitude
less than the size of the sum. Thus, efficient computation of this integral is computationally
nontrivial. Table 1 gives approximate values of Qp(x) for various values of x, computed using
an extensive numerical integration. Intermediate values can be obtained using interpolation
and the asymptotic behaviour is discussed below. _

When x — 0%, Qn(x) — y+/2x since, in this limit, we must recover the behaviour as
p — 0. We get the behaviour in the limit as x — oo by noting that R > D > —L. Taking
.expectations and using (29), we see that, for all ¢,

2 _
L 9% < 0n(@® < Qr(—a). (1)

2

where

Or(x) = erf(x)(% +x%) + 7_1;xe‘12 and erf(x) = 727?— /0 due™.
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TaBLE 1: Numerical values for Qp(-) (for positive ) and Qp(-) (for negative ).

x Op(x), 0 >0 X On(x), n <0
x—+0 yv/2x x—=0 yv/2x
0.0005 0.019 690 0.0005 0.019 965
0.0010 0.027 694 0.0010 0.028 394
0.0015 0.033789 0.0015 0.034874
0.0020 0.038 896 0.0020 0.040 369
0.0025 0.043372 0.0025 0.045 256
0.0050 0.060721 0.0050 0.064 633
0.0075 0.073 808 0.0075 .0.079746
0.0100 0.084 693 0.0100 0.092708
0.0125 0.094171 0.0125 0.104 259
0.0150 0.102651 0.0150 0.114814
0.0175 0.110375 0.0175 0.124 608
0.0200 0.117 503 0.0200 0.133772
0.0225 0.124 142 0.0225 0.142429
0.0250 0.130374 0.0250 0.150739
0.0275 0.136259 0.0275 0.158 565
0.0300 0.141 842 0.0300 0.166 229
0.0325 0.147 162 0.0325 0.173756
0.0350 0.152249 0.0350 0.180793
0.0375 0.157127 0.0375 0.187739
0.0400 0.161817 0.0400 0.194 489
0.0425 0.166 337 0.0425 0.201 094
0.0450 0.170702 0.0450 0.207 572
0.0500 0.179015 0.0475 0.213877
0.0600 0.194 248 0.0500 0.220056
0.0700 0.207 999 0.0550 0.231797
0.0800 0.220581 0.0600 0.243374
0.0900 0.232212 0.0650 0.254 585
0.1000 0.243 050 0.0700 0.265472
0.2000 0.325071 0.0750 0.276 070
0.3000 0.382016 0.0800 0.286 406
0.4000 0.426452 0.0850 0.296 507
0.5000 0.463 159 0.0900 0.306 393
1.5000 0.668 992 0.0950 0.316 066
2.5000 0.775976 0.1000 0.325586
3.5000 0.849 298 0.1500 0413136
4.5000 0.905 305 0.2000 0.491 599 .

10.0000 1.088 998 0.2500 0.564 333
20.0000 1.253794 0.3000 0.633 007
30.0000 1.351794 0.3500 0.698 849
40.0000 1.421 860 0.4000 0.762 455
50.0000 1.476 457 0.5000 0.884 593
150.0000 1.747 485 1.0000 1.445520
250.0000 1.874323 1.5000 1.970740
350.0000 1.958037 2.0000 2.483 960
450.0000 2.020630 © 25000 2.990940
1000.0000 2.219765 3.0000 3.492520
2000.0000 2.392826 3.5000 3.995190
3000.0000 2.494 109 4.0000 4.492 380
4000.0000 2.565985 4.5000 4.990430
5000.0000 2.621743 5.0000 5.498 820

X — 00 %10gx+0.49088 x = 00 x+%
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FIGURE 2: Asymptotic behaviour of Oy () for ¢ < 0 (thick line) and its asymptote (thin line).

Asymptotically, as ¢ — —oo, this yields that
o® 4+ < On@d <a®+1,

from which we de(_iuce that @, (x) — x + &(x), where }1 < 8(3c) < % We now argue that,
asymptotically, E{ D] = E[R] when 1 < 0. By the definition of D, when the maximum occurs

- before the minimum, D = R, so
E(D] > E[R | H — LIP[H — L],

where A — B denotes the event ‘A occurs before B’. Since u < 0, P[H —» L] — 1 as
T — oo. Considering the range, we have

E[‘R] =E[R | H— L1P[H — L1+ E[R | L - H]P[L - H].

" The term E[R | L — H] is slowly growing with 7', but, for u < 0, P[IL — H] — 0
exponentially fast, hence the second term asymptotically approaches 0, and so we conclude
that E[R] — E[R | H — L]. Thus, we see that, asymptotically, E[D] > E[R], hence that
E[D] = E[R], and so0 lim;_, o0& (x) = . Collecting the results together, we have

yv2x, x — 0t
x+%, X —> 00.

On(x) — {

The asymptotic behaviour is illustrated in Figure 2, which shows the numerical computation of
QOn(-) along with the asymptote.
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23. Case u > 0

In this case, for & > o2/ in the integral (7), the expression for M in (3) adds another term.
Thus, we find that

E[D] = / dh G(h),
0

00 o . 23 '2>
uh sin” 6, w-T
=2 dhexp{-Z1Y () _expl
fo exp{ a? } 4= O — cos O, sin 6, ( exp{ 202 cos? ), })

oo wh sinh? 7 uT
-2 dhexpl—— t———————|l—expl—=——>5—1 )
" o2 | n — coshysinhp 202 cosh?
The second integral can be reduced by a change of variables u = (k) as follows. Since
tanh u = o2u/uh,
dh o2 coshusinhu —u

du = u sinh? u
hence, the second integral reduces to

A e R R )
e u expy— sinhu| 1 —expj——————5—1 ).
w Jo Pl @nhu P 202 cosh? u

Changing variable in the first integral to u = uh/o?, we arrive at

’

_ 202
E[D] = = Q,(a?),
U

where & = u+/T /202 once again and, for x > 0,

[e0]

o sin> ' x )
= dule*y ——(1- -
Opx) .[) y [e Z 6, — cos 6, sin 6, ( exp{ cos? 6, })

n=0

u x
- inhu{1— - . 12
+ exp{ tanh u } - u( CXP{ cosh? u })] (12)

Here, each 6, satisfies tant, = 6,/u. The bound (11) is still valid, but not very useful. The
numerical computation of Qp(-) is relatively straightforward, as the e™ term in the integrand
makes it well behaved for the purposes of numerical integration. We know that O, (x) — y V2x
when x — 0. We now consider the other asymptotic limit, namely o — 0o. We will evaluate
the two contributions to Qp(-) separately. Consider the first part of the integral in (12), which
we denote by I (x),

I (x) /ood e_"i Sin O _ 1—ex a
X) = u _— — — .
! 0 4= 6 — cos 0, sin b, Pl " cos2 6,

Since 0 < cos? 6, < landx — oo, the term in parentheses is rapidly approaching 1. Since e™*
is rapidly decreasing, we interchange the summation with the integration and, after changing
variables in the integral to v = 6, (1) and using the identity

cosvsinv — v

dy = —————dv,
sin“ v
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" we find that

0 nr+m/2 v ] x
Iﬂx):Z/nn dv eXp{_ta_m;}va(l_eXp{_coszv})

n=0

After translating each integral by nsr and bringing the summation back into the integral, the
sum is a geometric progression, which implies that

; B /2 q exp{—v/ tan v} sin v(1 — exp{—x/ cos? v})
1x) = _/ v 1 + exp{—m/ tan v} '

Thus, (1 —e™)B1 < I1(x) < 1, where

-

B = /”/zdv exp{—uv/tan v}sinv’
0 1 4 exp{—m/ tan v}

and so we see that 71 (x) rapidly converges to B1. The constant 8] can be evaluated numerically
to give B = 0.4575. Now consider the second term in (12), which we denote by I>(x),

oo u ) X
hx) = -/(; du eXp{_tanhu } smhu(l — exp[—g(—)gl?—u}). 13)

When x is large, the term in parentheses is very close to 1 until u gets so large that coshu ~ x,
from which point this term rapidly decreases to 0. The first term in the integrand is always less
than % and rapidly increases from 0 to % Thus, we can write

L(x) /md “ | gnhu— L+ 1)(1 a
= expy — si S —expi—
2 0 w\oxP tanh u R P cosh? u

1 [*® X © 1 u

== du{1- - - du| - — - inh
2 /0 " ( exp{ cosh? u }) ./(; " (2 exp{ tanh u } sm u)
+ ) aweml i} (5 - o] o) a9
uexpy —— ¢ | = —exp{— sinhu |.
0 P1 " con2u J\2 P1 ™ anhu

We first show that the third integral approaches zero as x — oo. Since this integral is
monotonically decreasing in x, it suffices to consider the integral for x € N. Let

1 '
glu) = 3~ eXp{—tanhu } sinh u

and let

: n
falw) = g() exp{ — }
Then | f,| < g almost everywhere and f, — 0 almost everywhere. Therefore, by the Lebesgue
dominated convergence theorem, the third integral in (14) converges to 0. The second integral
is a constant, denoted by f, independent of x and can be evaluated numerically to give 82 =
0.4575, which apparently is (numerically) equal to 8;. The authors suspect that 8> = p; but
the proof has been elusive.
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We get bounds for the first integral using. the inequalities cosh u# > %e" and, for u > A,
coshu < %e)‘(A)” where A(A) = 1 +e~24/A. Denoting the first integral in (14) by F(x), we
immediately get the following bounds, which hold for arbitrary fixed A:

x X
Al1- — + [ du (1 — exp{—4xe=2HAH
( exp{ coshZA}) //; u ( ‘exp{ xXe b

<2F(x) < f > du (1 — exp{—4xe24}).
0

A change of variables to v = xe~2*(4) ip the lower bound and v = xe ™2

then leads to the following bounds:

—20A
x 1 [* du
All —exp} ——— +—/ —(1—e
( xp{ coshZA}) 2x Jo u( )

<2F() <+ / T ey, )
2 0o U ’

in the upper bound .

We can get an asymptotic form as follows. Suppose that z > 1. Then

24 ld , 2 d
/—u(l—e_4")=f —u(l—-e_4”)+logz—/ He—du,
o U 0 u 1 U

The first term is a constant and, when z — oo, the third term converges to Ei(-4) (see for
example [7]). Thus, as z — oo,

¢ du —4u .
—(1—e™™)—logz+C, (16)
0 U
where
L du —du .
C= —(1 —e ™) + Ei(—4) =~ 1.9635.
0o U
Substituting (16) into (15), we find that, for fixed A,

X
cosh? A

1 C
(logx+C)—Aexp{— } §2F(x)§§10gx+——. .

27 (4) 2

Since A is arbitrary, it can be chosen to grow with x, for example %(1 + ¢)log x, in which
case A(A) — 1 and the second term in the lower bound approaches 0, so the upper and lower
bounds approach each other. Thus, we can conclude that, as x — oo,

F(x) - %logx + D,
where D = C/4. Collecting the results, and remembering that Q,(x) = I1(x) + I2(x), we

have
yv2x, x— 0T,
%logx + D, x— o0,

Op(x) — {

where D =~ 0.490 88, and we have used the fact that 8; ~ ;. The asymptotic beha_vioiﬁf is. -
illustrated in Figure 3. ' '
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FIGURE 3: Asymptotic behaviour of Qp(-) for i > 0 (thick line) and its asymptote (thin line).

3. Discrete random walk

We model the Brownian motion as a discrete random walk at the times ; = i At, where
At =T/nandi =0,1,...,n. Define X; = X (;), the position of the random walk at time #;.
We assume that X; has the following dynamics:

Xy = X;+6 with probability p,
17 1x; -8  with probability g = 1 — p.

Definin
: 5 — JoTAT T AT
,,;(HM_JE_)
2 Vol ¥ u2At)’ an
=1(1__&~/L)
2\ Jorrpear )

in the limit At — 0, the random walk converges in distribution to a Brownian motion on [0, T']
with drift 4 and diffusion parameter o'

Analogously to D(¢) in Section 2, define D, to be the drawdown from the previous maximum
attime-step ¢, with Dg = 0. The maximum drawdown is given by D = max, D,. The drawdown
Dy is a random walk with probability p = 1 — p and a reflective barrier at 0. Let & > 0 be
an absorbing barrier and let f(i | /) be the probability that the random walk gets absorbed at
time-step i. Then

‘ : T/At
PLD > h] = Plabsorption in [0, 711 = ¥ £(i | h). (18)
i=0
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The probability f(i | &) was initially computed in [9] for p/g < (1+1/N )2.‘ The more general
case was given in [2], which, after the correction of some typographic errors, is given by

l 2
1 7 3
<(+N)
1
N

fa,

_ L 390 /=N (/DN
fiitm={jo+2=L 7
2 WD+ D)

2ip1/2(i—N)q1/2(i+N)q1/2 COShi—l 8 SiI]h2 B

Qi R R

._
+
|
~—, ~—,

~ 1
IO+ D7 cosn(N + DB — NpPcoshNE' ¢ -\ TN ) ;9
where N = h/8 and )
- . . , N ql/2 cosi !, sin? ary
flly = =2 pl2E=g e Z_:k (N + Dg1/2cos(N + a, — Np/2cos Nay,’ (20)
with oy € (v /(N — 1), (v+ Dr/(N — 1)) satisfying
2 sin(N + 1)ty — p"/?sin Nety = 0, @

and B satisfying
172 ginh(N + 1)B — p'/?sinh NB = 0.

Using (19) and (20) in (18) gives the distribution function in the discrete case.

Using & and p as given in (17), and taking the limit as A — 0 gives the contmuous case
as follows. The sum in (18) is the Riemann sum approximation to the integral fo dt f: (¢t | h),
where f; (¢ | h) is the absorption time density given by the limit of f(i | h)/Ar where i At =
t. It thus remains to take the limit as Az — 0 of f(i | h)/At. Since p = %(1 + A),
where A — p+/At/o and § — o+/At, the three cases in (19) reduce to u < o2/h, u =
o2/h and u > &2/h in the limit, analogous to the three cases in (9). Using the identity
lim,_, (1 + 1/x)* = e, we find that

: , . 1—a\"N? urt wh |
1/2(i—N) 1/2(+N) _ 24i/2 = =
Vp /TN T = A =% (1 +A) - exp{ ZGZ}CXP{ 3 } (22)

Expanding the eigenvalue condition for a,, in (21) to first order in A and using some trigonometric
identities gives
tan(N + l)c;\f COS Oty = z sin &
2 v v A_ 2
Since ay € (vr/(N — 1), (v+ D/(N — 1)), let 6, = (N + %)a,,. For fixed v, o, — 0, so
we take the first-order expansion in «, to get
2 . o
tan 6, = 0, 23)
uh .

with

N+1 N+1 '
Gve(vnN i (v +1)7r i)ﬁ(vn,(v+1})7t].,
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In an identical manner, we can analyse the eigenvalue condition for 8 to get

tanh(N + $)Bcosh B = % sinh g

Defining n = (N + 1)B and taking the limit, we find that
2
[e3
tanhn = —
n= it

‘We now analyse the summands in the expression (20) for f . Since sina, — 6, /(N + %), these
summands become
62 cos' !
(N + 52N + D[cos(8, + Fay) — Acos(®, — 3ay)]’

(24)

where A =1+ A)l/z/(l +1/N)1 — MY2 The identity lim,_,q cos!/¥ x =e=1/2 implies
“thatcos' ~! o, — exp{—azegt /2h?%}. Thus, after using some double-angle formulae and taking
the limit, the summands in f become
Ato? 02 exp{—o262t/2h?) _ =B, sin6,[0*07 + pu?h?]
B2 (1 —ph/o2)cos@, —O,sinb, o402 + u2h? — pho? ’

25

where the second equality follows by use of (23) and some trigonometric identities. Substituting
all these results back into (20) and dividing by Az, we finally arrive at the continuous limit of f:

2 2 . 452 272 242 2
t h 0 0 0 h —o0:t/2h
}GXP{—IZZ}J b $in 6, (00 + u“h*]exp{—o-0;t/ }’ 26)

f@y > exp] -2 =
202 h? rd 0402 + u?h? — pho?
where each 6, is a positive solution to the eigenvalue condition tan 8, = 26, /uh. The remain-

ing two cases are handled in exactly analogous ways. For the second case, p/q = (1 +1/N )%,
the additional term can be computed using (22) and, on dividing by At, we get

u2t ] 302 o?
o Iyt Cove R @7

For the third case, p/q > (1+ 1/N)2,deﬁnen = (N + %)ﬂ. Since lim,, ¢ cosh!/*% x = el/2,
so we get that coshi~1 ﬁ — exp{oznzt /2h?}. Thus, as with (24), the additional term in (19) is

Ato? n? exp{o?n?t/2h?)
h? N(1— A)coshncoshif — N(1+ A)sinhnsinh 18’

which, upon using manipulations similar to those that led to (25), becomes
nsinh n(u?h? — o*n?)
0-4,72 — .U«th + quh :

Using (22) and dividing by At, this additional term then becomes
62 (u2h? — o*p®)ysinhp wrt uh o?n’t o?
— —— - , —. (28
h2 (0%n? — u2h? + o2ph) exp{ 202 } exp{ o? } exp{ 2h2 } B> 8

Using (26), (27) and (28) in (19), we arrive at the continuous limit of the discrete-time density,
in agreement with (8).
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Appendix A. Expected value of the high, low and range

‘We derive the expected value of R. The authors have not been able to find this explicit result
in the literature for the general asymmetric Brownian motion, though Feller [6] gives the result
for the symmetric case. Consider the Brownian motion with an absorbing barrier at 2. The
probability density for the absorption time A is known (see for example [4]) and is given by the .
inverse Gaussian distribution

h (h — put)?
A0 = Grsamin eXp{", 20721 }

Thus, Gy (h) = P{H > h] is given by

T T 3 )
Gu(h) =/ de fA(t)=h/ d 1 exp{—(h wut) }
0 0

t (2710'21‘)1/2 202t

The expected value of H is given by E[H] = fo dh Gy (h), so we find (after a change of
variables to u = (h — ut)/(20%t)1/?) that

1 r o \? _, “(t) 2
E[H] = — | dt{—]) e*® fdtf
] ﬁfo (2t) ey

wherea(t) = ut'/2/(26?%) 12 The following identity is useful in evaluating the second integral:
—u? 2 A —A?
dxx due = rf(A)(A 2)+ Ze .

The first integral (after a change of variables) can be reduced to (o2 Jw)erf(a(T)). The final
result is then given by '

uT o2 i 2 ae~
E[H] = — + —|erf(@)(5 , 29
[H] 2+M[e(a)(2+a)+ﬁ] (29)
where o = «(T). Expectations for the low and the range can be obtained from the identities
E[L]= —E[H | — u} and E[R] = E[H | u]+E[H | — p]l. Using asymptotic forms for
erf(x) [7], we find that, when u = 0, E[R] = 2\/202T /7, reproducing the result in {6].
Asymptotically,

202(2(1 203 0
=l a— 0,
J— — 3

20° 1 e
,U« +§— e +---], o— 00

E[R] =

Thus, two different kinds of behaviour emerge at the different limits.
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