
Outline of the Course
1. The Learning Problem (April 3 )2. Is Learning Feasible? (April 5 )3. The Linear Model I (April 10 )4. Error and Noise (April 12 )5. Training versus Testing (April 17 )6. Theory of Generalization (April 19 )7. The VC Dimension (April 24 )8. Bias-Variane Tradeo� (April 26 )9. The Linear Model II (May 1 )10. Neural Networks (May 3 )

11. Over�tting (May 8 )12. Regularization (May 10 )13. Validation (May 15 )14. Support Vetor Mahines (May 17 )15. Kernel Methods (May 22 )16. Radial Basis Funtions (May 24 )17. Three Learning Priniples (May 29 )18. Epilogue (May 31 )
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• tehnique; pratial
• analysis; oneptual
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The learning problem - Outline
• Example of mahine learning
• Components of Learning
• A simple model
• Types of learning
• Puzzle
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Example: Prediting how a viewer will rate a movie
10% improvement = 1 million dollar prize
The essene of mahine learning:

• A pattern exists.
• We annot pin it down mathematially.
• We have data on it.
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Movie rating - a solution
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Components of learning
Metaphor: Credit approval
Appliant information: age 23 yearsgender maleannual salary $30,000years in residene 1 yearyears in job 1 yearurrent debt $15,000

· · · · · ·
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Components of learning
Formalization:
• Input: x (ustomer appliation)
• Output: y (good/bad ustomer? )
• Target funtion: f : X → Y (ideal redit approval formula)
• Data: (x1, y1), (x2, y2), · · · , (xN , yN) (historial reords)

↓ ↓ ↓

• Hypothesis: g : X → Y (formula to be used)
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Solution omponents
f:
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The 2 solution omponents of the learningproblem:
• The Hypothesis Set
H = {h} g ∈ H

• The Learning Algorithm
Together, they are referred to as the learningmodel .
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A simple hypothesis set - the `pereptron'
For input x = (x1, · · · , xd) `attributes of a ustomer'

Approve redit if d
∑

i=1

wixi > threshold,
Deny redit if d

∑

i=1

wixi < threshold.
This linear formula h ∈ H an be written as

h(x) = sign(( d
∑

i=1

wixi

)

− threshold)
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`linearly separable' data

h(x) = sign(( d
∑

i=1

wi xi

)

+ w0

)

Introdue an arti�ial oordinate x0 = 1:
h(x) = sign( d

∑

i=0

wi xi

)

In vetor form, the pereptron implements
h(x) = sign(wT

x)
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A simple learning algorithm - PLA
The pereptron implements

h(x) = sign(wT
x)

Given the training set:
(x1, y1), (x2, y2), · · · , (xN , yN)

pik a mislassi�ed point:sign(wT
xn) 6= yn

and update the weight vetor:
w← w + ynxn

w+  xy

yw+  x

y= +1

x
w

x

w−1y= 
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Iterations of PLA
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• One iteration of the PLA:
w← w + yxwhere (x, y) is a mislassi�ed training point.

• At iteration t = 1, 2, 3, · · · , pik a mislassi�ed point from
(x1, y1), (x2, y2), · · · , (xN , yN)and run a PLA iteration on it.

• That's it!
© AM

L Creator: Yaser Abu-Mostafa - LFD Leture 1 13/19



The learning problem - Outline
• Example of mahine learning
• Components of learning
• A simple model
• Types of learning
• Puzzle

© AM
L Creator: Yaser Abu-Mostafa - LFD Leture 1 14/19



Basi premise of learning
�using a set of observations to unover an underlying proess�

broad premise =⇒ many variations
• Supervised Learning
• Unsupervised Learning
• Reinforement Learning
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Supervised learning
Example from vending mahines � oin reognition
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Unsupervised learning
Instead of (input,orret output), we get (input, ? )
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Reinforement learning
Instead of (input,orret output),we get (input,some output,grade for this output)

The world hampion wasa neural network!
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A Learning puzzle
f = −1

f = +1

f = ?
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