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The learning problem - Outline
• Example of ma
hine learning
• Components of Learning
• A simple model
• Types of learning
• Puzzle
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Example: Predi
ting how a viewer will rate a movie
10% improvement = 1 million dollar prize
The essen
e of ma
hine learning:

• A pattern exists.
• We 
annot pin it down mathemati
ally.
• We have data on it.
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Movie rating - a solution

Mat
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tors predi
tedrating
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The learning approa
h
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Components of learning
Metaphor: Credit approval
Appli
ant information: age 23 yearsgender maleannual salary $30,000years in residen
e 1 yearyears in job 1 year
urrent debt $15,000

· · · · · ·

Approve 
redit?
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Components of learning
Formalization:
• Input: x (
ustomer appli
ation)
• Output: y (good/bad 
ustomer? )
• Target fun
tion: f : X → Y (ideal 
redit approval formula)
• Data: (x1, y1), (x2, y2), · · · , (xN , yN) (histori
al re
ords)

↓ ↓ ↓

• Hypothesis: g : X → Y (formula to be used)
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f:

(ideal  credit  approval  function)

(historical  records  of  credit  customers)

HYPOTHESIS   SET

(set  of  candidate  formulas)

ALGORITHM

LEARNING FINAL
HYPOTHESIS

UNKNOWN  TARGET  FUNCTION

(final  credit  approval  formula)

TRAINING   EXAMPLES

X    Y

x y x y
NN11

(    ,    ), ... , (    ,    )

H

A

g ~ f  ~
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Solution 
omponents
f:

(ideal  credit  approval  function)

(historical  records  of  credit  customers)

HYPOTHESIS   SET

(set  of  candidate  formulas)

ALGORITHM

LEARNING FINAL
HYPOTHESIS

UNKNOWN  TARGET  FUNCTION

(final  credit  approval  formula)

TRAINING   EXAMPLES

X    Y

x y x y
NN11

(    ,    ), ... , (    ,    )

H

A

g ~ f  ~

The 2 solution 
omponents of the learningproblem:
• The Hypothesis Set
H = {h} g ∈ H

• The Learning Algorithm
Together, they are referred to as the learningmodel .
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A simple hypothesis set - the `per
eptron'
For input x = (x1, · · · , xd) `attributes of a 
ustomer'

Approve 
redit if d
∑

i=1

wixi > threshold,
Deny 
redit if d

∑

i=1

wixi < threshold.
This linear formula h ∈ H 
an be written as

h(x) = sign(( d
∑

i=1

wixi

)

− threshold)
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`linearly separable' data

h(x) = sign(( d
∑

i=1

wi xi

)

+ w0

)

Introdu
e an arti�
ial 
oordinate x0 = 1:
h(x) = sign( d

∑

i=0

wi xi

)

In ve
tor form, the per
eptron implements
h(x) = sign(wT

x)
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A simple learning algorithm - PLA
The per
eptron implements

h(x) = sign(wT
x)

Given the training set:
(x1, y1), (x2, y2), · · · , (xN , yN)

pi
k a mis
lassi�ed point:sign(wT
xn) 6= yn

and update the weight ve
tor:
w← w + ynxn

w+  xy

yw+  x

y= +1

x
w

x

w−1y= 
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Iterations of PLA

+

+
+

+
+_

_

_

_

• One iteration of the PLA:
w← w + yxwhere (x, y) is a mis
lassi�ed training point.

• At iteration t = 1, 2, 3, · · · , pi
k a mis
lassi�ed point from
(x1, y1), (x2, y2), · · · , (xN , yN)and run a PLA iteration on it.

• That's it!
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The learning problem - Outline
• Example of ma
hine learning
• Components of learning
• A simple model
• Types of learning
• Puzzle


© AM
L Creator: Yaser Abu-Mostafa - LFD Le
ture 1 14/19



Basi
 premise of learning
�using a set of observations to un
over an underlying pro
ess�

broad premise =⇒ many variations
• Supervised Learning
• Unsupervised Learning
• Reinfor
ement Learning
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Supervised learning
Example from vending ma
hines � 
oin re
ognition
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Unsupervised learning
Instead of (input,
orre
t output), we get (input, ? )

M
as

s

Size
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Reinfor
ement learning
Instead of (input,
orre
t output),we get (input,some output,grade for this output)

The world 
hampion wasa neural network!
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A Learning puzzle
f = −1

f = +1

f = ?
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