Review of Lecture 1

- Learning is used when
- A pattern exists
- We cannot pin it down mathematically
- We have data on it
- Focus on supervised learning
- Unknown target function $y=f(\mathbf{x})$
- Data set $\left(\mathbf{x}_{1}, y_{1}\right), \cdots,\left(\mathbf{x}_{N}, y_{N}\right)$
- Learning algorithm picks $g \approx f$ from a hypothesis set \mathcal{H}

Example: Perceptron Learning Algorithm

- Learning an unknown function? - Impossible ©. The function can assume any value outside the data we have.
- So what now?

Learning From Data

Yaser S. Abu-Mostafa
California Institute of Technology

Lecture 2: Is Learning Feasible?

Feasibility of learning - Outline

- Probability to the rescue
- Connection to learning
- Connection to real learning
- A dilemma and a solution

A related experiment

- Consider a 'bin' with red and green marbles.
$\mathbb{P}[$ picking a red marble $]=\mu$
$\mathbb{P}[$ picking a green marble $]=1-\mu$
- The value of μ is unknown to us.
- We pick N marbles independently.
- The fraction of red marbles in sample $=\nu$

BIN

$\mu=$ probability of red marbles

Does ν say anything about μ ?
No!
Sample can be mostly green while bin is mostly red.

Yes!
Sample frequency ν is likely close to bin frequency μ.
possible versus probable

$\mu=$ probability
of red marbles

What does ν say about μ ?

In a big sample (large N), ν is probably close to μ (within ϵ).

Formally,

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2 e^{-2 \epsilon^{2} N}
$$

This is called Hoeffding's Inequality

In other words, the statement " $\mu=\nu$ " is P.A.C.

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2 e^{-2 \epsilon^{2} N}
$$

- Valid for all N and ϵ
- Bound does not depend on μ
- Tradeoff: N, ϵ, and the bound.
- $\nu \approx \mu \quad \Longrightarrow \quad \mu \approx \nu$

$\mu=$ probability of red marbles

Connection to learning

Bin: The unknown is a number μ

Learning: The unknown is a function $f: \mathcal{X} \rightarrow \mathcal{Y}$

Each marble \bullet is a point $\mathbf{x} \in \mathcal{X}$

- : Hypothesis got it right $h(\mathrm{x})=f(\mathrm{x})$
- : Hypothesis got it wrong $h(\mathrm{x}) \neq f(\mathrm{x})$

Back to the learning diagram

The bin analogy:

Are we done?

Not so fast! h is fixed.

For this h, ν generalizes to μ.
'verification' of h, not learning

No guarantee ν will be small.

We need to choose from multiple h 's.

Multiple bins

Generalizing the bin model to more than one hypothesis:
h_{1}
h_{2}
h_{M}

Notation for learning

Both μ and ν depend on which hypothesis h
ν is 'in sample' denoted by $E_{\text {in }}(h)$
μ is 'out of sample' denoted by $E_{\text {out }}(h)$

The Hoeffding inequality becomes:

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 e^{-2 \epsilon^{2} N}
$$

000000000
$E_{\mathrm{in}}(h)$

Notation with multiple bins
h_{1}
h_{2}

$$
h_{M}
$$

Are we done already?

Not so fast!! Hoeffding doesn't apply to multiple bins.

What?

Coin analogy

Question: If you toss a fair coin 10 times, what is the probability that you will get 10 heads?

Answer: $\approx 0.1 \%$

Question: If you toss 1000 fair coins 10 times each, what is the probability that some coin will get 10 heads?

Answer: $\approx 63 \%$

From coins to learning

A simple solution

$$
\begin{aligned}
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq \mathbb{P}[& \left|E_{\text {in }}\left(h_{1}\right)-E_{\text {out }}\left(h_{1}\right)\right|>\epsilon \\
& \text { or }\left|E_{\text {in }}\left(h_{2}\right)-E_{\text {out }}\left(h_{2}\right)\right|>\epsilon \\
& \cdots \\
& \text { or } \left.\left|E_{\text {in }}\left(h_{M}\right)-E_{\text {out }}\left(h_{M}\right)\right|>\epsilon\right] \\
\leq & \sum_{m=1}^{M} \mathbb{P}\left[\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right|>\epsilon\right]
\end{aligned}
$$

The final verdict

$$
\begin{aligned}
& \mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq \sum_{m=1}^{M} \mathbb{P}\left[\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right|>\epsilon\right] \\
& \leq \sum_{m=1}^{M} 2 e^{-2 \epsilon^{2} N} \\
& \mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq 2 M e^{-2 \epsilon^{2} N}
\end{aligned}
$$

