Review of Lecture 1

- Learning is used when
 - A pattern exists
 - We cannot pin it down mathematically
 - We have data on it
- Focus on supervised learning
 - Unknown target function $y = f(\mathbf{x})$
 - Data set $(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)$
 - Learning algorithm picks $g \approx f$ from a hypothesis set \mathcal{H}

Example: Perceptron Learning Algorithm

- Learning an unknown function? - Impossible (:). The function can assume any value outside the data we have.
 - So what now?

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 2: Is Learning Feasible?

Sponsored by Caltech's Provost Office, E&AS Division, and IST Thursday, April 5, 2012

Feasibility of learning - Outline

- Probability to the rescue
- Connection to learning
- Connection to *real* learning
- A dilemma and a solution

A related experiment

- Consider a 'bin' with red and green marbles.
 - $\mathbb{P}[\text{ picking a red marble }] = \mu$

 $\mathbb{P}[\text{ picking a green marble }] = 1-\mu$

- The value of μ is <u>unknown</u> to us.
- We pick N marbles independently.
- The fraction of red marbles in sample = ν

 μ = probability of red marbles

SAMPLE V = fraction of red marbles

Does ν say anything about μ ?

No!

Sample can be mostly green while bin is mostly red.

Yes!

Sample frequency u is likely close to bin frequency μ .

possible versus probable

BIN

 $\begin{array}{ll} \mu \ = \ \text{probability} \\ \text{of red marbles} \end{array}$

SAMPLE V = fraction of red marbles

What does ν say about μ ?

In a big sample (large N), u is probably close to μ (within ϵ).

Formally,

$$\mathbb{P}\left[\left|\nu-\mu\right| > \epsilon\right] \le 2e^{-2\epsilon^2 N}$$

This is called **Hoeffding's Inequality**.

In other words, the statement '' $\mu =
u$ '' is P.A.C.

 $\mathbb{P}\left[\left|\nu-\mu\right|>\epsilon\right]\leq 2e^{-2\epsilon^2 N}$

- Valid for all N and ϵ
- Bound does not depend on μ
- Tradeoff: N, ϵ , and the bound.

•
$$\nu \approx \mu \implies \mu \approx \nu$$
 \odot

L = probability of red marbles

Connection to learning

Bin: The unknown is a number μ

Learning: The unknown is a function $f: \mathcal{X} \to \mathcal{Y}$

Each marble ullet is a point $\mathbf{x} \in \mathcal{X}$

• : Hypothesis got it right $h(\mathbf{x}) = f(\mathbf{x})$

• : Hypothesis got it wrong $h(\mathbf{x}) \neq f(\mathbf{x})$

Back to the learning diagram

The bin analogy:

Are we done?

Not so fast! h is fixed.

For this h, u generalizes to μ .

'verification' of h_1 not learning

No guarantee u will be small.

We need to **choose** from multiple h's.

Multiple bins

Generalizing the bin model to more than one hypothesis:

Notation for learning

Both μ and u depend on which hypothesis h

u is 'in sample' denoted by $E_{\text{in}}(h)$

 μ is 'out of sample' denoted by $E_{\text{out}}(h)$

The Hoeffding inequality becomes:

$$\mathbb{P}\left[\left|E_{\text{in}}(h) - E_{\text{out}}(h)\right| > \epsilon\right] \leq 2e^{-2\epsilon^2 N}$$

$E_{in}(h)$

Notation with multiple bins

Are we done already? \odot

Not so fast!! Hoeffding doesn't apply to multiple bins.

What?

 h_1

 h_2

.

Coin analogy

Question: If you toss a fair coin 10 times, what is the probability that you will get 10 heads?

Answer: $\approx 0.1\%$

Question: If you toss 1000 fair coins 10 times each, what is the probability that some coin will get 10 heads?

Answer: $\approx 63\%$

From coins to learning

A simple solution

• • •

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \leq \mathbb{P}[||E_{in}(h_1) - E_{out}(h_1)| > \mathbf{or} |E_{in}(h_2) - E_{out}(h_2)| > \mathbf{or} |E_$$

$$\mathbf{or} |E_{in}(h_M) - E_{out}(h_M)| \\ \leq \sum_{m=1}^{M} \mathbb{P} \left[|E_{in}(h_m) - E_{out}(h_m)| \right]$$

The final verdict

$$\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \leq \sum_{m=1}^{M} \mathbb{P}[|E_{in}(h_m) - E_{out}(h_m)|$$
$$\leq \sum_{m=1}^{M} 2e^{-2\epsilon^2 N}$$

 $\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$

$> \epsilon]$