Review of Lecture 1

- Learning is used when
 - A pattern exists
 - We cannot pin it down mathematically
 - We have data on it

- Focus on supervised learning
 - Unknown target function $y = f(x)$
 - Data set $(x_1, y_1), \cdots, (x_N, y_N)$
 - Learning algorithm picks $g \approx f$ from a hypothesis set \mathcal{H}

Example: Perceptron Learning Algorithm

- Learning an unknown function?
 - Impossible 😞. The function can assume any value outside the data we have.
 - So what now?
Learning From Data

Yaser S. Abu-Mostafa
California Institute of Technology

Lecture 2: Is Learning Feasible?
Feasibility of learning - Outline

- Probability to the rescue
- Connection to learning
- Connection to real learning
- A dilemma and a solution
A related experiment

- Consider a 'bin' with red and green marbles.

\[P[\text{picking a red marble}] = \mu \]
\[P[\text{picking a green marble}] = 1 - \mu \]

- The value of \(\mu \) is unknown to us.

- We pick \(N \) marbles independently.

- The fraction of red marbles in sample = \(\nu \)
Does ν say anything about μ?

No!
Sample can be mostly green while bin is mostly red.

Yes!
Sample frequency ν is likely close to bin frequency μ.

possible versus probable
What does ν say about μ?

In a big sample (large N), ν is probably close to μ (within ϵ).

Formally,

$$\mathbb{P} \left[|\nu - \mu| > \epsilon \right] \leq 2e^{-2\epsilon^2 N}$$

This is called **Hoeffding’s Inequality**.

In other words, the statement “$\mu = \nu$” is P.A.C.
\[\mathbb{P} \left[|\nu - \mu| > \epsilon \right] \leq 2e^{-2\epsilon^2 N} \]

- Valid for all \(N \) and \(\epsilon \)
- Bound does not depend on \(\mu \)
- Tradeoff: \(N \), \(\epsilon \), and the bound.

\[\nu \approx \mu \implies \mu \approx \nu \]
Connection to learning

Bin: The unknown is a number μ

Learning: The unknown is a function $f : \mathcal{X} \rightarrow \mathcal{Y}$

Each marble \bullet is a point $x \in \mathcal{X}$

- : Hypothesis got it right $h(x) = f(x)$
- : Hypothesis got it wrong $h(x) \neq f(x)$
The bin analogy:
Are we done?

Not so fast! \(h \) is fixed.

For this \(h \), \(\nu \) generalizes to \(\mu \).

‘verification’ of \(h \), not learning

No guarantee \(\nu \) will be small.

We need to choose from multiple \(h \)’s.
Multiple bins

Generalizing the bin model to more than one hypothesis:

\[h_1 \quad h_2 \quad h_M \]

\[\mu_1 \quad \mu_2 \quad \mu_M \]

\[\nu_1 \quad \nu_2 \quad \nu_M \]
Notation for learning

Both μ and ν depend on which hypothesis h

ν is 'in sample' denoted by $E_{\text{in}}(h)$

μ is 'out of sample' denoted by $E_{\text{out}}(h)$

The Hoeffding inequality becomes:

$$\mathbb{P} \left[|E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon \right] \leq 2e^{-2\epsilon^2N}$$
Notation with multiple bins

h_1 \hspace{2cm} h_2 \hspace{2cm} h_M

$E_{\text{out}}(h_1)$ \hspace{2cm} $E_{\text{out}}(h_2)$ \hspace{2cm}$E_{\text{out}}(h_M)$

$E_{\text{in}}(h_1)$ \hspace{2cm} $E_{\text{in}}(h_2)$ \hspace{2cm} $E_{\text{in}}(h_M)$
Are we done already? 😊

Not so fast!! Hoeffding doesn’t apply to multiple bins.

What?
Coin analogy

Question: If you toss a fair coin 10 times, what is the probability that you will get 10 heads?

Answer: $\approx 0.1\%$

Question: If you toss 1000 fair coins 10 times each, what is the probability that some coin will get 10 heads?

Answer: $\approx 63\%$
From coins to learning

BINGO?
A simple solution

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \leq \mathbb{P}[|E_{\text{in}}(h_1) - E_{\text{out}}(h_1)| > \epsilon$$

or $$|E_{\text{in}}(h_2) - E_{\text{out}}(h_2)| > \epsilon$$

or $$|E_{\text{in}}(h_2) - E_{\text{out}}(h_2)| > \epsilon$$

or $$|E_{\text{in}}(h_M) - E_{\text{out}}(h_M)| > \epsilon$$

$$\leq \sum_{m=1}^{M} \mathbb{P}[|E_{\text{in}}(h_m) - E_{\text{out}}(h_m)| > \epsilon]$$
The final verdict

\[\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \leq \sum_{m=1}^{M} \mathbb{P}[|E_{in}(h_m) - E_{out}(h_m)| > \epsilon] \]

\[\leq \sum_{m=1}^{M} 2e^{-2\epsilon^2 N} \]

\[\mathbb{P}[|E_{in}(g) - E_{out}(g)| > \epsilon] \leq 2Me^{-2\epsilon^2 N} \]