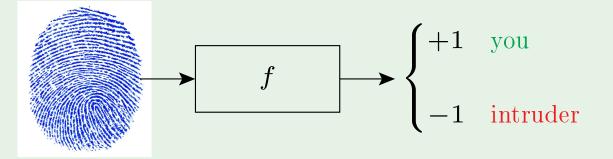
Review of Lecture 4

• Error measures

- User-specified e $(h(\mathbf{x}), f(\mathbf{x}))$



- In-sample:

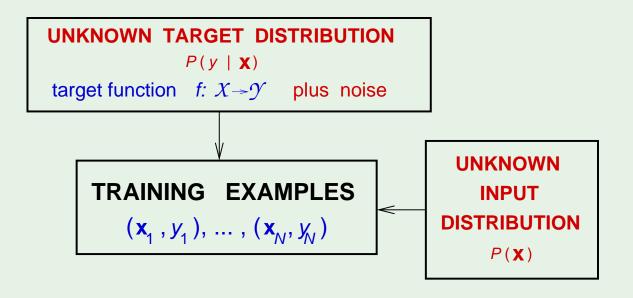
$$E_{\rm in}(h) = \frac{1}{N} \sum_{n=1}^{N} e\left(h(\mathbf{x}_n), f(\mathbf{x}_n)\right)$$

- Out-of-sample

$$E_{\text{out}}(h) = \mathbb{E}_{\mathbf{x}}\left[e\left(h(\mathbf{x}), f(\mathbf{x})\right)\right]$$

Noisy targets

$$y = f(\mathbf{x}) \longrightarrow$$



-
$$(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_1)$$

 $P(\mathbf{x}, y) = P(\mathbf{x}_N, y_1)$

- $E_{\mathrm{out}}(h)$ is now $\mathbb{E}_{\mathbf{x}, y}\left[\mathrm{e}\left(h(\mathbf{x}), y\right)\right]$

$y \sim P(y \mid \mathbf{x})$

 (y_N) generated by

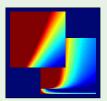
 $\mathbf{x})P(y|\mathbf{x})$

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 5: Training versus Testing

Sponsored by Caltech's Provost Office, E&AS Division, and IST Tuesday, April 17, 2012



Outline

- From training to testing
- Illustrative examples
- Key notion: break point
- Puzzle

The final exam

Testing:

$$\mathbb{P}\left[\left|E_{\rm in} - E_{\rm out}\right| > \epsilon\right] \le 2 e^{-2\epsilon^2 N}$$

Training:

$$\mathbb{P}\left[\left|E_{\rm in} - E_{\rm out}\right| > \epsilon\right] \le 2M e^{-2\epsilon^2 N}$$

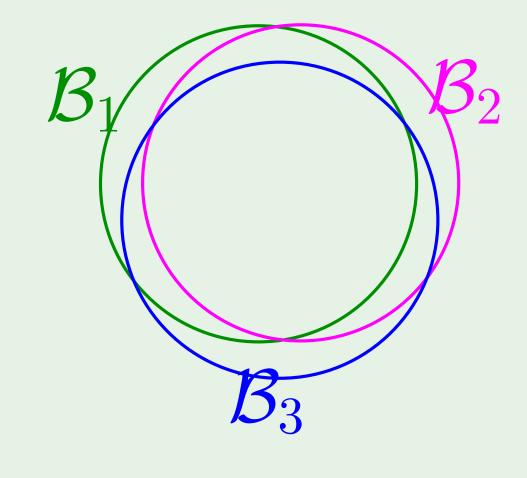
Where did the M come from?

The \mathcal{B} ad events \mathcal{B}_m are

$$|E_{\rm in}(h_m) - E_{\rm out}(h_m)| > \epsilon''$$

The union bound:

 $\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \cdots \text{ or } \mathcal{B}_M]$ $\leq \mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \cdots + \mathbb{P}[\mathcal{B}_M]$ no overlaps: M terms



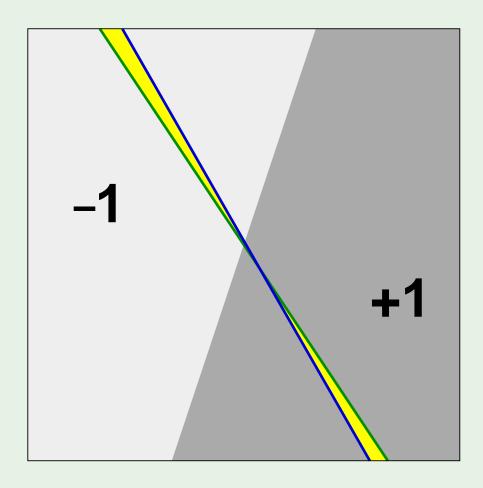
Can we improve on M?

Yes, bad events are very overlapping!

 $\Delta E_{ ext{out}}$: change in +1 and -1 areas

 $\Delta E_{
m in}$: change in labels of data points

 $|E_{\rm in}(h_1) - E_{\rm out}(h_1)| \approx |E_{\rm in}(h_2) - E_{\rm out}(h_2)|$

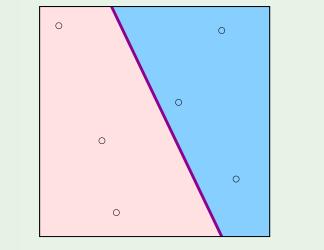


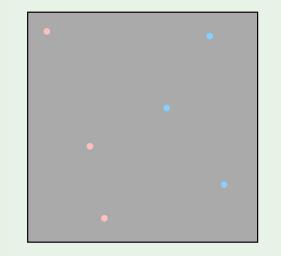
What can we replace M with?

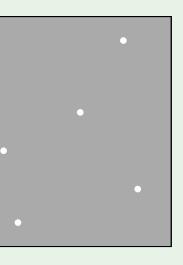
Instead of the whole input space,

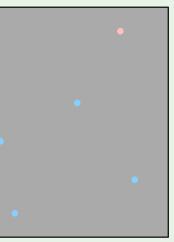
we consider a finite set of input points,

and count the number of *dichotomies*









Dichotomies: mini-hypotheses

A hypothesis $h: \mathcal{X} \to \{-1, +1\}$

A dichotomy $h: {\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N} \rightarrow {\{-1, +1\}}$

Number of hypotheses $|\mathcal{H}|$ can be infinite

Number of dichotomies $|\mathcal{H}(\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_N)|$ is at most 2^N

Candidate for replacing ${\it M}$

The growth function

The growth function counts the <u>most</u> dichotomies on any N points

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \cdots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \cdots, \mathbf{x}_N)|$$

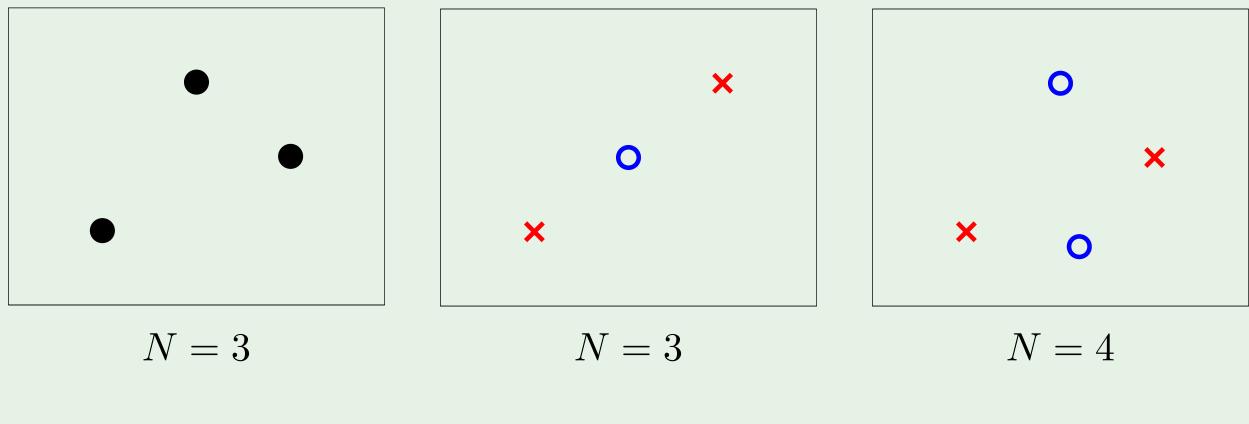
The growth function satisfies:

$$m_{\mathcal{H}}(N) \leq 2^N$$

Let's apply the definition.

C A Creator: Yaser Abu-Mostafa - LFD Lecture 5

Applying $m_{\mathcal{H}}(N)$ definition – perceptrons



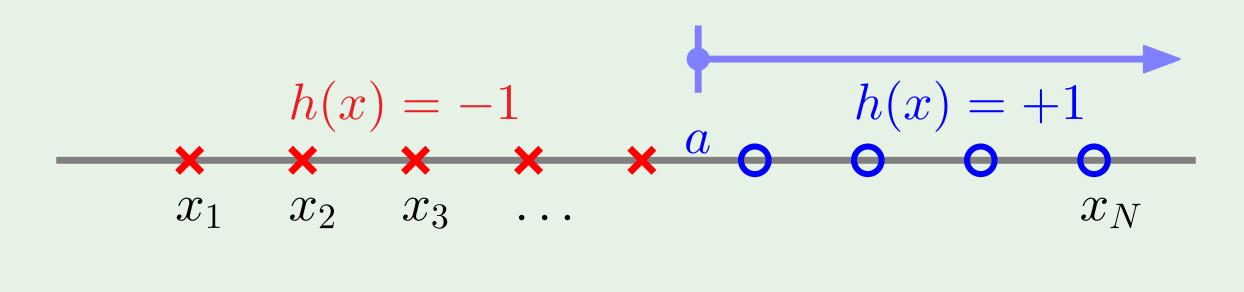
$$m_{\mathcal{H}}(3) = 8$$

$$m_{\mathcal{H}}(4) = 14$$

Outline

- From training to testing
- Illustrative examples
- Key notion: break point
- Puzzle

Example 1: positive rays



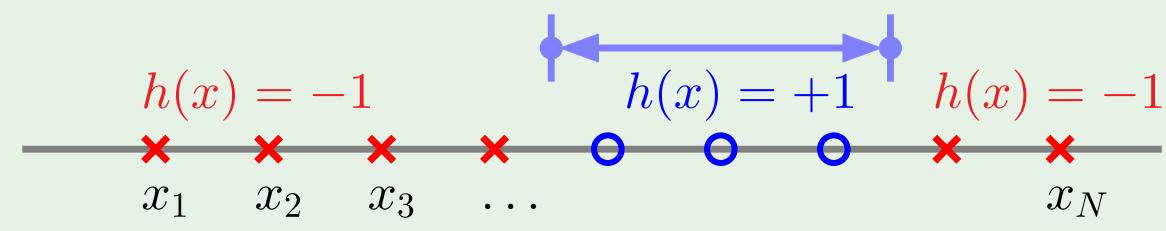
 \mathcal{H} is set of $h: \mathbb{R} \to \{-1, +1\}$

$$h(x) = \operatorname{sign}(x - a)$$

$$m_{\mathcal{H}}(N) = N + 1$$

© ₱ Creator: Yaser Abu-Mostafa - LFD Lecture 5

Example 2: positive intervals

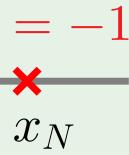


 \mathcal{H} is set of $h: \mathbb{R} \to \{-1, +1\}$

Place interval ends in two of N+1 spots

$$m_{\mathcal{H}}(N) = \binom{N+1}{2} + 1 = \frac{1}{2}N$$

© 🎢 Creator: Yaser Abu-Mostafa - LFD Lecture 5



$N^2 + \frac{1}{2}N + 1$

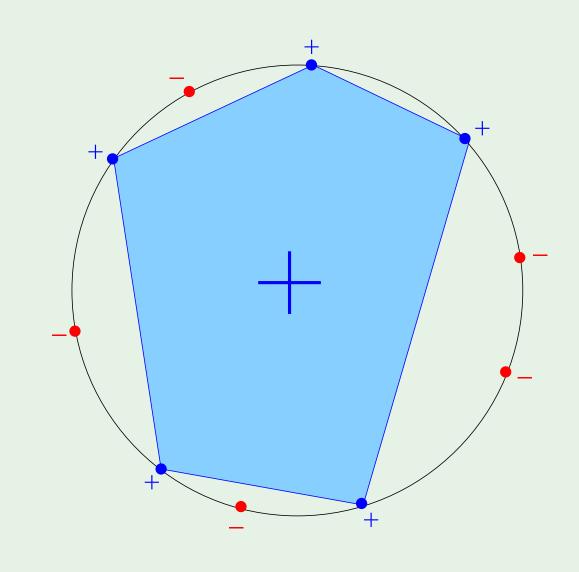
Example 3: convex sets

 \mathcal{H} is set of $h \colon \mathbb{R}^2 \to \{-1, +1\}$

 $h(\mathbf{x}) = +1$ is convex

 $m_{\mathcal{H}}(N) = 2^N$

The N points are 'shattered' by convex sets



The 3 growth functions

• \mathcal{H} is positive rays:

$$m_{\mathcal{H}}(N) = N + 1$$

• \mathcal{H} is positive intervals:

$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

• \mathcal{H} is convex sets:

$$m_{\mathcal{H}}(N) = 2^N$$

Back to the big picture

Remember this inequality?

$$\mathbb{P}\left[\left|E_{\rm in} - E_{\rm out}\right| > \epsilon\right] \le 2M e^{-2\epsilon^2 N}$$

0

What happens if $m_{\mathcal{H}}(N)$ replaces M?

$$m_{\mathcal{H}}(N)$$
 polynomial \implies Good!

Just prove that $m_{\mathcal{H}}(N)$ is polynomial?

C A Creator: Yaser Abu-Mostafa - LFD Lecture 5

Outline

- From training to testing
- Illustrative examples
- Key notion: break point
- Puzzle

Break point of ${\mathcal H}$

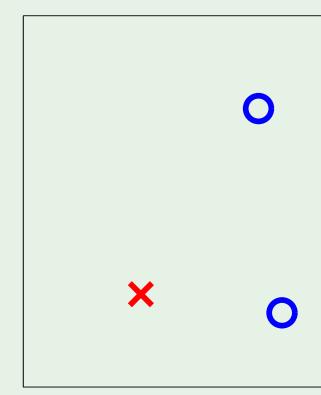
Definition:

If no data set of size k can be shattered by $\mathcal{H},$ then k is a *break point* for \mathcal{H}

$$m_{\mathcal{H}}(k) < 2^k$$

For 2D perceptrons, k=4

A bigger data set cannot be shattered either





Break point - the 3 examples

• Positive rays
$$m_{\mathcal{H}}(N) = N + 1$$

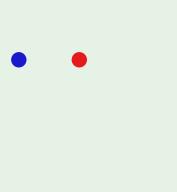
break point k = 2

• Positive intervals $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$

break point k = 3

 \bullet Convex sets $m_{\mathcal{H}}(N)=2^N$

break point $k=\infty$ '



Main result

No break point $\implies m_{\mathcal{H}}(N) = 2^N$

Any break point $\implies m_{\mathcal{H}}(N)$ is **polynomial** in N

Puzzle

