Review of Lecture 4 e Noisy targets

e Error measures y=f(x) — y~Plylx)
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e From training to testing

e ||lustrative examples

e Key notion: break point

o Puzzle
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Testing:

Training:

©

The final exam

Pl|E, — E| >€e] < 2 e 2N

P[|E, — Ey| > €] < 2Me 2N
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Where did the M come from?

The Bad events B,,, are

“‘Ein(hm) il Eout(hm)| > 6” B 2

The union bound:

P|B; or By or --- or B,

SP[Bl] P[BQ] e P[BM| 3

no overlaps: M terms
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Can we improve on M7

Yes, bad events are very overlapping!
AFE, . change in +1 and —1 areas

AFE,,: change in labels of data points

|Ein(h1) — Eout(h1)| = |Ein(h2) — Eou(he)]
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What can we replace M with?

o
(0]
(0]
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Instead of the whole input space,

we consider a finite set of input points,

and count the number of dichotomies




Dichotomies: mini-hypotheses

A hypothesis h: X — {—1,+1}

A dichotomy h : {xi,%9, - ,xny} — {—1,+1}
Number of hypotheses |H| can be infinite
Number of dichotomies |H(x1,Xs, -+ - ,Xxx)| is at most 2%

Candidate for replacing M
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The growth function

The growth function counts the most dichotomies on any N points

my(N)= max |H(xq, - ,Xy)]
Xl,-H,XNE/Y

The growth function satisfies:

mH(N) < oV

Let's apply the definition.
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Applying my(N) definition - perceptrons
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Outline

e From training to testing

e |llustrative examples

e Key notion: break point

e Puzzle
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Example 1: positive rays

h(x) =—1 . h(x) = +1
— N N—N—HL O O—O—O—
r1 To I3 X N

H issetof h: R— {—1,+1}
h(x) = sign(z — a)

mH(N):N+1
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Example 2: positive intervals

h(x) =—1 h(x) =41 h(x) =—1
X X x x O 0O 0 x x
L1 L2 A3 LN

H issetof h: R — {—1,+1}

Place interval ends in two of N 4+ 1 spots

N +1

1
2

mu(N) = (V1) +1 = IN?
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Example 3: convex sets

H issetof h:R* — {—1,+1}
h(x) = +1 is convex
mH(N) — 2N

The N points are ‘shattered’ by convex sets
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e H is positive rays:

e H is positive intervals;

e H Is convex sets:

©

The 3 growth functions
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Back to the big picture

Remember this inequality?

0,2
P[|E, — Eoi| > €] < 2M e 2N
What happens if mg(IN) replaces M7
my(N) polynomial = Good!

Just prove that my(IN) is polynomial?

©
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Outline

e From training to testing

e |[lustrative examples

e Key notion: break point

e Puzzle
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Break point of 'H

Definition:
If no data set of size k can be shattered by H, o
then k is a break point tor H
X
mH(k) < 2F
* 0
For 2D perceptrons, k = 4

A bigger data set cannot be shattered either
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Break point - the 3 examples

e Positive rays my(N) =N + 1
break point £k = 2

e Positive intervals my(N) = 2N?+ N + 1
break point £ = 3

o Convex sets my(IN) = 2V

break point £ = o0’
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©

No break point

Any break point

Main result

— ’771L71((;Z\J') — 9N

—>  my(N) is polynomial in N
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Puzzle

X1 X2 X3

® O O
O @& O
O O @
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