Review of Lecture 5

- Dichotomies

- Growth function

$$
m_{\mathcal{H}}(N)=\max _{\mathbf{x}_{1}, \cdots, \mathbf{x}_{N} \in \mathcal{X}}\left|\mathcal{H}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{N}\right)\right|
$$

- Break point

- Maximum \# of dichotomies

\mathbf{X}_{1}	\mathbf{X}_{2}	\mathbf{X}_{3}
\circ	\circ	\circ
\circ	\circ	\bullet
\circ	\bullet	\circ
\circ	\circ	\circ

Learning From Data

Yaser S. Abu-Mostafa
California Institute of Technology

Lecture 6: Theory of Generalization

Outline

- Proof that $m_{\mathcal{H}}(N)$ is polynomial
- Proof that $m_{\mathcal{H}}(N)$ can replace M

Bounding $m_{\mathcal{H}}(N)$

To show: $\quad m_{\mathcal{H}}(N)$ is polynomial

We show: $\quad m_{\mathcal{H}}(N) \leq \cdots \leq \cdots \leq$ a polynomial

Key quantity:
$B(N, k)$: Maximum number of dichotomies on N points, with break point k

Recursive bound on $B(N, k)$

Consider the following table:
$B(N, k)=\alpha+2 \beta$

	\# of rows	x_{1} x_{2}	$\ldots \mathrm{x}_{N-1}$	x_{N}
S_{1}	α	+1 +1	.. +1	+1
		$-1+1$	+1	-1
		:		:
		+1 $\quad-1$... -1	-1
		-1 +1	... -1	+1
$S_{2} S_{2}^{+}$	β	+1 -1	$\ldots \quad+1$	$+1$
		$\begin{array}{ll}-1 & -1\end{array}$	+1	+1
		:	: :	:
		+1 -1	\ldots. +1	+1
		-1 -1	\ldots... 1	+1
S_{2}^{-}	β	+1 $\quad-1$	$\ldots \quad+1$	-1
		$\begin{array}{ll}-1 & -1\end{array}$	\ldots. +1	-1
		-	:	:
		+1 -1	$\ldots \quad+1$	-1
		-1 -1	\ldots.. -1	-1

Estimating α and β

Focus on $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{N-1}$ columns:

$$
\alpha+\beta \leq B(N-1, k)
$$

Estimating β by itself

Now, focus on the $S_{2}=S_{2}^{+} \cup S_{2}^{-}$rows:

$$
\beta \leq B(N-1, k-1)
$$

Putting it together

$$
B(N, k)=\alpha+2 \beta
$$

$$
\begin{aligned}
& \alpha+\beta \leq B(N-1, k) \\
& \beta \leq B(N-1, k-1)
\end{aligned}
$$

$$
B(N, k) \leq
$$

$$
B(N-1, k)+B(N-1, k-1)
$$

	\# of rows	x_{1} x_{2}	$\ldots \mathrm{x}_{N-1}$	x_{N}
S_{1}	α	+1 +1	+1	+1
		$-1+1$	\ldots +1	-1
		: :	:	:
		+1 -1	... -1	-1
		-1 +1	... -1	+1
S_{2}^{+}	β	+1 -1	$\ldots{ }^{\text {. }}$ +1	+1
		$\begin{array}{ll}-1 & -1\end{array}$	+1	+1
		:	: :	:
		+1 -1	... +1	+1
		-1 -1	$\ldots-1$	+1
S_{2}	β	+1 -1	.. +1	-1
		$\begin{array}{ll}-1 & -1\end{array}$	\ldots +1	-1
		:	:	:
		+1 -1	... +1	-1
		-1 -1	.. -1	-1

Numerical computation of $B(N, k)$ bound

$$
B(N, k) \leq B(N-1, k)+B(N-1, k-1)
$$

		k						
	1	2	3	4	5	6	\ldots	
	1	1	2	2	2	2	2	

Analytic solution for $B(N, k)$ bound
$B(N, k) \leq B(N-1, k)+B(N-1, k-1)$

Theorem:

$$
B(N, k) \leq \sum_{i=0}^{k-1}\binom{N}{i}
$$

1. Boundary conditions: easy

		k						
		1	2	3	4	5	6	\ldots
	1	1	2	2	2	2	2	\cdots
	2	1						
	3	1						
N	4	1					\bullet	
	5	1						
	6	1						
	$:$	$:$						

2. The induction step

$$
\begin{aligned}
\sum_{i=0}^{k-1}\binom{N}{i} & =\sum_{i=0}^{k-1}\binom{N-1}{i}+\sum_{i=0}^{k-2}\binom{N-1}{i} ? \\
& =1+\sum_{i=1}^{k-1}\binom{N-1}{i}+\sum_{i=1}^{k-1}\binom{N-1}{i-1} \\
& =1+\sum_{i=1}^{k-1}\left[\binom{N-1}{i}+\binom{N-1}{i-1}\right] \\
& =1+\sum_{i=1}^{k-1}\binom{N}{i}=\sum_{i=0}^{k-1}\binom{N}{i} \checkmark
\end{aligned}
$$

It is polynomial!

For a given \mathcal{H}, the break point k is fixed

$$
m_{\mathcal{H}}(N) \leq \underbrace{\sum_{i=0}^{k-1}\binom{N}{i}}_{\text {maximum power is } N^{k-1}}
$$

Three examples

$$
\sum_{i=0}^{k-1}\binom{N}{i}
$$

- \mathcal{H} is positive rays: (break point $k=2$)

$$
m_{\mathcal{H}}(N)=N+1 \leq N+1
$$

- \mathcal{H} is positive intervals: (break point $k=3$)

$$
m_{\mathcal{H}}(N)=\frac{1}{2} N^{2}+\frac{1}{2} N+1 \leq \frac{1}{2} N^{2}+\frac{1}{2} N+1
$$

- \mathcal{H} is 2 D perceptrons: (break point $k=4$)

$$
m_{\mathcal{H}}(N)=? \leq \frac{1}{6} N^{3}+\frac{5}{6} N+1
$$

Outline

- Proof that $m_{\mathcal{H}}(N)$ is polynomial
- Proof that $m_{\mathcal{H}}(N)$ can replace M

What we want

Instead of:

$$
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq 2 \quad M \quad e^{-2 \epsilon^{2} N}
$$

We want:

$$
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq 2 m_{\mathcal{H}}(N) e^{-2 \epsilon^{2} N}
$$

Pictorial proof

- How does $m_{\mathcal{H}}(N)$ relate to overlaps?
- What to do about $E_{\text {out }}$?
- Putting it together

What to do about $E_{\text {out }}$

-ゃ००००००००
$E_{\text {in }}(h)$

$E_{\text {in }}(h) \bullet ~$ $E_{\text {in }}^{\prime}(h) \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Putting it together

Not quite:

$$
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq 2 m_{\mathcal{H}}(N) e^{-2 \epsilon^{2} N}
$$

but rather:

$$
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq 4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \epsilon^{2} N}
$$

The Vapnik-Chervonenkis Inequality

