Review of Lecture 6

- $m_{\mathcal{H}}(N)$ is polynomial
if \mathcal{H} has a break point k

- The VC Inequality

Hoeffding Inequality

(a)

(b)

VC Bound

(c)

$$
\begin{array}{rlcc}
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq & 2 & M & e^{-2 \epsilon^{2} N} \\
& \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow \\
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq & 4 & m_{\mathcal{H}}(2 N) & e^{-\frac{1}{8} \epsilon^{2} N}
\end{array}
$$

Learning From Data

Yaser S. Abu-Mostafa
California Institute of Technology

Lecture 7: The VC Dimension

Outline

- The definition
- VC dimension of perceptrons
- Interpreting the VC dimension
- Generalization bounds

Definition of VC dimension

The VC dimension of a hypothesis set \mathcal{H}, denoted by $d_{\mathrm{VC}}(\mathcal{H})$, is
the largest value of N for which $m_{\mathcal{H}}(N)=2^{N}$
"the most points \mathcal{H} can shatter"

$$
\begin{aligned}
N \leq d_{\mathrm{VC}}(\mathcal{H}) & \Longrightarrow \mathcal{H} \text { can shatter } N \text { points } \\
k>d_{\mathrm{VC}}(\mathcal{H}) & \Longrightarrow k \text { is a break point for } \mathcal{H}
\end{aligned}
$$

The growth function

In terms of a break point k :

$$
m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1}\binom{N}{i}
$$

In terms of the VC dimension d_{VC} :

$$
m_{\mathcal{H}}(N) \leq \underbrace{\sum_{i=0}^{d_{\mathrm{VC}}}\binom{N}{i}}_{\text {maximum power is }}
$$

Examples

- \mathcal{H} is positive rays:

$$
d_{\mathrm{VC}}=1
$$

- \mathcal{H} is 2 D perceptrons:

$$
d_{\mathrm{VC}}=3
$$

- \mathcal{H} is convex sets:

$$
d_{\mathrm{VC}}=\infty
$$

VC dimension and learning

$d_{\mathrm{VC}}(\mathcal{H})$ is finite $\quad \Longrightarrow \quad g \in \mathcal{H}$ will generalize

- Independent of the learning algorithm
- Independent of the input distribution

PROBABILITY
distribution
P on X
TRAINING EXAMPLES
$\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)$ LEARNING
ALGORITHM

- Independent of the target function \square

VC dimension of perceptrons

For $d=2, d_{\mathrm{VC}}=3$
In general, $\quad d_{\mathrm{VC}}=d+1$

We will prove two directions:

$$
\begin{aligned}
& d_{\mathrm{VC}} \leq d+1 \\
& d_{\mathrm{VC}} \geq d+1
\end{aligned}
$$

Here is one direction

A set of $N=d+1$ points in \mathbb{R}^{d} shattered by the perceptron:

$$
\mathrm{X}=\left[\begin{array}{c}
-\mathbf{x}_{1}^{\top}- \\
-\mathbf{x}_{2}^{\top}- \\
-\mathbf{x}_{3}^{\top}- \\
\vdots \\
-\mathbf{x}_{d+1}^{\top}-
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & \ldots & 0 \\
1 & 0 & 1 & & 0 \\
& \vdots & & \ldots & 0 \\
1 & 0 & \ldots & 0 & 1
\end{array}\right]
$$

X is invertible

Can we shatter this data set?

For any $\mathbf{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{d+1}\end{array}\right]=\left[\begin{array}{c} \pm 1 \\ \pm 1 \\ \vdots \\ \pm 1\end{array}\right]$, can we find a vector \mathbf{w} satisfying

$$
\operatorname{sign}(X w)=\mathbf{y}
$$

Easy! Just make $\quad \mathrm{Xw}=\mathbf{y}$
which means $\quad \mathbf{w}=X^{-1} \mathbf{y}$

We can shatter these $d+1$ points

This implies what?

$$
[\mathrm{a}] d_{\mathrm{VC}}=d+1
$$

$$
[\mathrm{b}] d_{\mathrm{VC}} \geq d+1
$$

$$
[\mathrm{c}] d_{\mathrm{VC}} \leq d+1
$$

[d] No conclusion

Now, to show that $d_{\mathrm{vc}} \leq d+1$

We need to show that:

[a] There are $d+1$ points we cannot shatter
[b] There are $d+2$ points we cannot shatter
[c] We cannot shatter any set of $d+1$ points
[d] We cannot shatter any set of $d+2$ points

Take any $d+2$ points

For any $d+2$ points,

$$
\mathbf{x}_{1}, \cdots, \mathbf{x}_{d+1}, \mathbf{x}_{d+2}
$$

More points than dimensions \Longrightarrow we must have

$$
\mathbf{x}_{j}=\sum_{i \neq j} a_{i} \mathbf{x}_{i}
$$

where not all the a_{i} 's are zeros

So?

$$
\mathbf{x}_{j}=\sum_{i \neq j} a_{i} \mathbf{x}_{i}
$$

Consider the following dichotomy:
\mathbf{x}_{i} 's with non-zero a_{i} get $\quad y_{i}=\operatorname{sign}\left(a_{i}\right)$
and \mathbf{x}_{j} gets $y_{j}=-1$

No perceptron can implement such dichotomy!

Why?

$$
\mathbf{x}_{j}=\sum_{i \neq j} a_{i} \mathbf{x}_{i} \quad \Longrightarrow \quad \mathbf{w}^{\top} \mathbf{x}_{j}=\sum_{i \neq j} a_{i} \mathbf{w}^{\top} \mathbf{x}_{i}
$$

If $y_{i}=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)=\operatorname{sign}\left(a_{i}\right)$, then $a_{i} \mathbf{w}^{\top} \mathbf{x}_{i}>0$

This forces

$$
\mathbf{w}^{\top} \mathbf{x}_{j}=\sum_{i \neq j} a_{i} \mathbf{w}^{\top} \mathbf{x}_{i}>0
$$

Therefore, $\quad y_{j}=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}_{j}\right)=+1$

Putting it together

We proved $\quad d_{\mathrm{VC}} \leq d+1 \quad$ and $\quad d_{\mathrm{VC}} \geq d+1$

$$
d_{\mathrm{VC}}=d+1
$$

What is $d+1$ in the perceptron?

It is the number of parameters $w_{0}, w_{1}, \cdots, w_{d}$

Outline

- The definition
- VC dimension of perceptrons
- Interpreting the VC dimension
- Generalization bounds

1. Degrees of freedom

Parameters create degrees of freedom
\# of parameters: analog degrees of freedom
d_{VC} : equivalent 'binary' degrees of freedom

The usual suspects

Positive rays $\left(d_{\mathrm{VC}}=1\right)$:

$$
h(x)=-1 \quad \begin{array}{lll}
& & \\
\end{array}
$$

Positive intervals $\left(d_{\mathrm{VC}}=2\right)$:

$$
h(x)=-1 \quad h(x)=+1 \quad h(x)=-1
$$

Not just parameters

Parameters may not contribute degrees of freedom:

d_{VC} measures the effective number of parameters

2. Number of data points needed

Two small quantities in the VC inequality:

$$
\mathbb{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq \underbrace{4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \epsilon^{2} N}}_{\delta}
$$

If we want certain ϵ and δ, how does N depend on d_{VC} ?

Let us look at

$$
N^{d} e^{-N}
$$

$$
N^{d} e^{-N}
$$

Fix $N^{d} e^{-N}=$ small value

How does N change with d ?

Rule of thumb:

$$
N \geq 10 d_{\mathrm{VC}}
$$

Outline

- The definition
- VC dimension of perceptrons
- Interpreting the VC dimension
- Generalization bounds

Rearranging things

Start from the VC inequality:

$$
\mathbb{P}\left[\left|E_{\text {out }}-E_{\text {in }}\right|>\epsilon\right] \leq \underbrace{4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \epsilon^{2} N}}_{\delta}
$$

Get ϵ in terms of δ :

$$
\delta=4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \epsilon^{2} N} \Longrightarrow \epsilon=\underbrace{\sqrt{\frac{8}{N} \ln \frac{4 m_{\mathcal{H}}(2 N)}{\delta}}}_{\Omega}
$$

With probability $\geq 1-\delta$,

$$
\left|E_{\text {out }}-E_{\text {in }}\right| \leq \Omega(N, \mathcal{H}, \delta)
$$

Generalization bound

With probability $\geq 1-\delta, \quad E_{\text {out }}-E_{\text {in }} \leq \Omega$

$$
\text { With probability } \geq 1-\delta
$$

$$
E_{\text {out }} \leq E_{\text {in }}+\Omega
$$

