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Approximation-generalization tradeoff

Small E,u: good approximation of f out of sample.
More complex ‘H = better chance of approximating f
Less complex 'H == better chance of generalizing out of sample

ldeal H = {f} winning lottery ticket ©
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Quantifying the tradeoff

VC analysis was one approach: E, < Ei, + ()

Bias-variance analysis is another: decomposing E,; into
1. How well H can approximate f

2. How well we can zoom in on a good h € 'H

Applies to real-valued targets and uses squared error
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Start with Eout

Now, let us focus on:

Bp | (97 (x) - f(x))°
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The average hypothesis
To evaluate Ep [(g(p) (x) — f(X))z}

we define the ‘average hypothesis g(x):
§(x) = =p | ¢ ()]

Imagine many data sets Dy, Dy, --- , Dg
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Bias and variance

En | (97 () = £())°| = Ep | (97 (x) = 3(x))" |+ (30x) = £())°
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_— ~————
var(x) bias(x)

Therefore, Ep [Eout(g(p>)] = Bx [ED {(g(D) (%) = f(X))QH

= Ey|bias(x) + var(x)]

bias 4+ var
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The tradeoff

bias = E {(g(x) — f(x))Q} var = Ey [ED {(g(D) (x) — §(X))2H

@/
HW
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Example:

f:-1,1]—R f(x) = sin(7x)

Only two training examples! N =

Two models used for learning:
H()I h(ill‘) = b
Hi: h(x)=azx+0b

Which is better, Hy or H1?
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Approximation - H, versus H;
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Learning - H,

15F
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versus H;
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Bias and variance - H,
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Bias and variance - H;

sin(7x)
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and the winner is ...

H() Hl
= = = g(x
g()
() Sin ()
XL XL
bias = 0.50 var = 0.25 bias = 0.21 var = 1.69
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| esson learned

Match the ‘'model complexity’

to the data resources, not to the target complexity
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Outline
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Expected E,,t and E;,

Data set D of size NV

Expected out-of-sample error  Ep[E,u(gP))]
Expected in-sample error  Ep[Ei,(gP)]

How do they vary with N7
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The curves
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VC versus bias-variance
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Linear regression case

Noisy target y = W*'X 4+ noise

Data set D = {(x1,91),---, (XN, YUnN) }
Linear regression solution: w = (X'X) Xy
In-sample error vector = Xw — y

‘Out-of-sample’ error vector = Xw — y’

© A 21/22



Learning curves for linear regression
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