Review of Lecture 8

Bias and variance

Expected value of $E_{
m out}$ w.r.t. ${\cal D}$

$$=$$
 bias $+$ var

$$g^{(\mathcal{D})}(\mathbf{x}) \to \bar{g}(\mathbf{x}) \to f(\mathbf{x})$$

Learning curves

How $E_{
m in}$ and $E_{
m out}$ vary with N

B-V:

VC:

ullet $N \propto "VC dimension"$

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 9: The Linear Model II

Where we are

- Linear classification
- Linear regression ✓
- Logistic regression
- Nonlinear transforms

Nonlinear transforms

$$\mathbf{x} = (x_0, x_1, \cdots, x_d) \xrightarrow{\Phi} \mathbf{z} = (z_0, z_1, \cdots, z_{\tilde{d}})$$

Each
$$z_i = \phi_i(\mathbf{x})$$
 $\mathbf{z} = \Phi(\mathbf{x})$

Example:
$$\mathbf{z} = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$$

Final hypothesis $g(\mathbf{x})$ in \mathcal{X} space:

$$\operatorname{sign}\left(\tilde{\mathbf{w}}^{\mathsf{T}}\Phi(\mathbf{x})\right)$$
 or $\tilde{\mathbf{w}}^{\mathsf{T}}\Phi(\mathbf{x})$

The price we pay

$$\mathbf{x} = (x_0, x_1, \cdots, x_d) \xrightarrow{\Phi} \mathbf{z} = (z_0, z_1, \cdots, z_{\tilde{d}})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{w} \qquad \qquad \tilde{\mathbf{w}}$$

 $d_{
m VC} < ilde{d} + 1$

 $d_{\rm VC} = d + 1$

Two non-separable cases

© A Creator: Yaser Abu-Mostafa - LFD Lecture 9

First case

Use a linear model in ${\cal X}$; accept $E_{
m in}>0$

or

Insist on $E_{\mathrm{in}}=0$; go to high-dimensional ${\mathcal Z}$

© M Creator: Yaser Abu-Mostafa - LFD Lecture 9

Second case

$$\mathbf{z} = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$$

Why not:
$$\mathbf{z} = (1, x_1^2, x_2^2)$$

or better yet:
$$\mathbf{z} = (1, x_1^2 + x_2^2)$$

or even:
$$\mathbf{z} = (x_1^2 + x_2^2 - 0.6)$$

Lesson learned

Looking at the data *before* choosing the model can be hazardous to your $E_{
m out}$

Data snooping

Learning From Data - Lecture 9

Logistic regression - Outline

• The model

• Error measure

• Learning algorithm

A third linear model

$$s = \sum_{i=0}^{d} w_i x_i$$

linear classification

$$h(\mathbf{x}) = \operatorname{sign}(s)$$

linear regression

$$h(\mathbf{x}) = s$$

logistic regression

$$h(\mathbf{x}) = \theta(s)$$

The logistic function θ

The formula:

$$\theta(s) = \frac{e^s}{1 + e^s}$$

soft threshold: uncertainty

sigmoid: flattened out 's'

Probability interpretation

 $h(\mathbf{x}) = \theta(s)$ is interpreted as a probability

Example. Prediction of heart attacks

Input x: cholesterol level, age, weight, etc.

 $\theta(s)$: probability of a heart attack

The signal $s = \mathbf{w}^{\mathsf{T}}\mathbf{x}$ "risk score"

Genuine probability

Data (\mathbf{x}, y) with binary y, generated by a noisy target:

$$P(y \mid \mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{for } y = +1; \\ 1 - f(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

The target $f:\mathbb{R}^d o [0,1]$ is the probability

Learn $g(\mathbf{x}) = \theta(\mathbf{w}^{\mathsf{T}} \mathbf{x}) \approx f(\mathbf{x})$

Error measure

For each (\mathbf{x}, y) , y is generated by probability $f(\mathbf{x})$

Plausible error measure based on likelihood:

If h = f, how likely to get y from \mathbf{x} ?

$$P(y \mid \mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{for } y = +1; \\ 1 - h(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

Formula for likelihood

$$P(y \mid \mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{for } y = +1; \\ 1 - h(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

Substitute
$$h(\mathbf{x}) = \theta(\mathbf{w}^\mathsf{T}\mathbf{x})$$
, noting $\theta(-s) = 1 - \theta(s)$

$$P(y \mid \mathbf{x}) = \theta(y \ \mathbf{w}^{\mathsf{T}} \mathbf{x})$$

Likelihood of
$$\mathcal{D} = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$$
 is

$$\prod_{n=1}^{N} P(y_n \mid \mathbf{x}_n) = \prod_{n=1}^{N} \theta(y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n)$$

Maximizing the likelihood

Minimize

$$-\frac{1}{N}\ln\left(\prod_{n=1}^{N}\theta(y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n)\right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{1}{\theta(y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n)} \right)$$

$$\theta(s) = \frac{1}{1 + e^{-s}}$$

$$E_{ ext{in}}(\mathbf{w}) = rac{1}{N} \sum_{n=1}^{N} rac{\ln\left(1 + e^{-y_n \mathbf{w}^\mathsf{T} \mathbf{x}_n}
ight)}{\operatorname{e}\left(h(\mathbf{x}_n), y_n
ight)}$$
 "cross-entropy" error

Logistic regression - Outline

The model

• Error measure

• Learning algorithm

How to minimize $E_{\rm in}$

For logistic regression,

Compare to linear regression:

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n - y_n)^2 \longleftrightarrow \text{closed-form solution}$$

Iterative method: gradient descent

General method for nonlinear optimization

Start at $\mathbf{w}(0)$; take a step along steepest slope

Fixed step size: $\mathbf{w}(1) = \mathbf{w}(0) + \eta \hat{\mathbf{v}}$

What is the direction $\hat{\mathbf{v}}$?

Formula for the direction $\hat{\mathbf{v}}$

$$\Delta E_{\text{in}} = E_{\text{in}}(\mathbf{w}(0) + \eta \hat{\mathbf{v}}) - E_{\text{in}}(\mathbf{w}(0))$$

$$= \eta \nabla E_{\text{in}}(\mathbf{w}(0))^{\text{T}} \hat{\mathbf{v}} + O(\eta^{2})$$

$$\geq -\eta \|\nabla E_{\text{in}}(\mathbf{w}(0))\|$$

Since $\hat{\mathbf{v}}$ is a unit vector,

$$\hat{\mathbf{v}} = -\frac{\nabla E_{\text{in}}(\mathbf{w}(0))}{\|\nabla E_{\text{in}}(\mathbf{w}(0))\|}$$

Fixed-size step?

How η affects the algorithm:

 η should increase with the slope

 \bigcirc \nearrow Creator: Yaser Abu-Mostafa - LFD Lecture 9

Easy implementation

Instead of

$$\Delta \mathbf{w} = \boldsymbol{\eta} \, \hat{\mathbf{v}}$$

$$= -\boldsymbol{\eta} \, \frac{\nabla E_{\text{in}}(\mathbf{w}(0))}{\|\nabla E_{\text{in}}(\mathbf{w}(0))\|}$$

Have

$$\Delta \mathbf{w} = - \boldsymbol{\eta} \nabla E_{\text{in}}(\mathbf{w}(0))$$

Fixed **learning rate** η

Logistic regression algorithm

- Initialize the weights at t=0 to $\mathbf{w}(0)$
- 2: for $t = 0, 1, 2, \dots$ do
- 3: Compute the gradient

$$\nabla E_{\text{in}} = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^{\mathsf{T}}(t) \mathbf{x}_n}}$$

- Update the weights: $\mathbf{w}(t+1) = \mathbf{w}(t) \eta \nabla E_{\mathrm{in}}$
- 1 Iterate to the next step until it is time to stop
- 6. Return the final weights **w**

Summary of Linear Models

24/24