Review of Lecture 10

Multilayer perceptrons

Logical combinations of perceptrons

Neural networks

$$x_j^{(l)} = \theta \left(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} x_i^{(l-1)} \right)$$

where $\theta(s) = \tanh(s)$

Backpropagation

$$\Delta w_{ij}^{(l)} = -\eta \ x_i^{(l-1)} \underline{\delta_j^{(l)}}$$

where

$$\delta_{i}^{(l-1)} = (1 - (x_{i}^{(l-1)})^{2}) \sum_{j=1}^{d^{(l)}} w_{ij}^{(l)} \delta_{j}^{(l)}$$

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 11: Overfitting

Outline

What is overfitting?

• The role of noise

• Deterministic noise

Dealing with overfitting

Illustration of overfitting

Simple target function

5 data points- **noisy**

4th-order polynomial fit

 $E_{
m in}=0$, $E_{
m out}$ is huge

Overfitting versus bad generalization

Neural network fitting noisy data

Overfitting: $E_{
m in}\downarrow$ $E_{
m out}\uparrow$

The culprit

Overfitting: "fitting the data more than is warranted"

Culprit: fitting the noise - harmful

Case study

10th-order target + noise

50th-order target

6/23

Two fits for each target

Noisy low-order target

	2nd Order	10th Order
$\overline{E_{ m in}}$	0.050	0.034
$E_{ m out}$	0.127	9.00

Noiseless high-order target

	2nd Order	10th Order
$E_{ m in}$	0.029	10^{-5}
$E_{ m out}$	0.120	7680

An irony of two learners

Two learners O and R

They know the target is 10th order

O chooses \mathcal{H}_{10}

R chooses \mathcal{H}_2

Learning a 10th-order target

We have seen this case

Remember learning curves?

Even without noise

The two learners \mathcal{H}_{10} and \mathcal{H}_2

They know there is no noise

Is there really no noise?

Learning a 50th-order target

A detailed experiment

Impact of noise level and target complexity

$$y = f(x) + \underbrace{\epsilon(x)}_{\sigma^2} = \underbrace{\sum_{q=0}^{q} \alpha_q \ x^q}_{\text{normalized}} + \epsilon(x)$$

noise level: σ^2

target complexity: Q_f

data set size: N

The overfit measure

We fit the data set $(x_1,y_1),\cdots,(x_N,y_N)$ using our two models:

 \mathcal{H}_2 : 2nd-order polynomials

 \mathcal{H}_{10} : 10th-order polynomials

Compare out-of-sample errors of

$$g_2 \in \mathcal{H}_2$$
 and $g_{10} \in \mathcal{H}_{10}$

overfit measure: $E_{\rm out}(\boldsymbol{g_{10}}) - E_{\rm out}(g_2)$

The results

Impact of "noise"

Outline

What is overfitting?

• The role of noise

Deterministic noise

Dealing with overfitting

Definition of deterministic noise

The part of f that \mathcal{H} cannot capture: $f(\mathbf{x}) - h^*(\mathbf{x})$

Why "noise"?

Main differences with stochastic noise:

- 1. depends on ${\cal H}$
- 2. fixed for a given \mathbf{x}

 \bigcirc $\begin{tabular}{ll} \end{tabular}$ Creator: Yaser Abu-Mostafa - LFD Lecture 11

Impact on overfitting

Deterministic noise and Q_f

Finite N: \mathcal{H} tries to fit the noise

how much overfit

Noise and bias-variance

Recall the decomposition:

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right] = \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^{2}\right]}_{\mathsf{var}(\mathbf{x})} + \underbrace{\left[\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]}_{\mathsf{bias}(\mathbf{x})}$$

What if f is a noisy target?

$$y = f(\mathbf{x}) + \epsilon(\mathbf{x})$$
 $\mathbb{E}\left[\epsilon(\mathbf{x})\right] = 0$

A noise term

$$\mathbb{E}_{\mathcal{D},\epsilon} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - y \right)^2 \right] = \mathbb{E}_{\mathcal{D},\epsilon} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) - \epsilon(\mathbf{x}) \right)^2 \right]$$

$$= \mathbb{E}_{\mathcal{D}, \epsilon} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) + \bar{g}(\mathbf{x}) - f(\mathbf{x}) - \epsilon(\mathbf{x}) \right)^2 \right]$$

$$= \mathbb{E}_{\mathcal{D}, \epsilon} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 + \left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2 + \left(\epsilon(\mathbf{x}) \right)^2 \right]$$

+ cross terms

Actually, two noise terms

$$\underbrace{\mathbb{E}_{\mathcal{D},\mathbf{x}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^2\right]}_{\text{var}} + \underbrace{\mathbb{E}_{\mathbf{x}}\left[\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]}_{\text{bias}} + \underbrace{\mathbb{E}_{\boldsymbol{\epsilon},\mathbf{x}}\left[\left(\boldsymbol{\epsilon}(\mathbf{x})\right)^2\right]}_{\sigma^2} + \underbrace{\mathbb{E}_{\boldsymbol{\epsilon},\mathbf{x}}\left[\left(\boldsymbol{\epsilon}(\mathbf{x})\right)^2\right]}_{\text{deterministic noise}} + \underbrace{\mathbb{E}_{\boldsymbol{\epsilon},\mathbf{x}}\left[\left(\boldsymbol{\epsilon}(\mathbf{x})\right)^2\right]}_{\text{otherwise}} + \underbrace{\mathbb{E}_{\boldsymbol{\epsilon},\mathbf{x}}\left[\left(\boldsymbol{\epsilon}(\mathbf{x})\right)^$$

Outline

What is overfitting?

• The role of noise

• Deterministic noise

Dealing with overfitting

Two cures

Regularization: Putting the brakes

Validation: Checking the bottom line

Putting the brakes

