Review of Lecture 16

- Radial Basis Functions
$h(\mathbf{x})=\sum_{k=1}^{K} w_{k} \exp \left(-\gamma\left\|\mathbf{x}-\boldsymbol{\mu}_{k}\right\|^{2}\right)$

Choose $\boldsymbol{\mu}_{k}$'s: Lloyd's algorithm
Choose w_{k} 's: Pseudo-inverse

Learning From Data

Yaser S. Abu-Mostafa
California Institute of Technology

Lecture 17: Three Learning Principles

Outline

- Occam's Razor
- Sampling Bias
- Data Snooping

Recurring theme - simple hypotheses

A "quote" by Einstein:
An explanation of the data should be made as simple as possible, but no simpler

The razor: symbolic of a principle set by William of Occam

Occam's Razor

The simplest model that fits the data is also the most plausible.

Two questions:

1. What does it mean for a model to be simple?
2. How do we know that simpler is better?

First question: 'simple' means?

Measures of complexity - two types: complexity of h and complexity of \mathcal{H}

Complexity of h : MDL, order of a polynomial

Complexity of \mathcal{H} : Entropy, VC dimension

- When we think of simple, it's in terms of h
- Proofs use simple in terms of \mathcal{H}

and the link is ...

counting: $\quad \ell$ bits specify $h \quad \Longrightarrow \quad h$ is one of 2^{ℓ} elements of a set \mathcal{H}
Real-valued parameters? Example: 17th order polynomial - complex and one of "many"
Exceptions? Looks complex but is one of few - SVM

Puzzle 1: Football oracle

0000000000000000111111111111111 0 1
00001111000011110000111100001111 00110011001100110011001100110011 01010101010101010101010101010101 1

- Letter predicting game outcome
- Good call!

1

- More letters - for 5 weeks
- Perfect record!
- Want more? \$50 charge \odot
- Should you pay?

Second question: Why is simpler better?

Better doesn't mean more elegant! It means better out-of-sample performance

The basic argument: (formal proof under different idealized conditions)

Fewer simple hypotheses than complex ones
$m_{\mathcal{H}}(N)$
\Rightarrow less likely to fit a given data set $m_{\mathcal{H}}(N) / 2^{N}$
\Rightarrow more significant when it happens
The postal scam: $m_{\mathcal{H}}(N)=1$ versus 2^{N}

A fit that means nothing

Scientist A

Scientist B

"falsifiable"

Conductivity linear in temperature?

Two scientists conduct experiments

What evidence do A and B provide?

Outline

- Occam's Razor
- Sampling Bias
- Data Snooping

Puzzle 2: Presidential election

In 1948, Truman ran against Dewey in close elections

A newspaper ran a phone poll of how people voted
Dewey won the poll decisively - newspaper declared:

On to the victory rally ...
... of Truman \odot

It's not δ 's fault:

$$
\mathbb{P}\left[\left|E_{\text {in }}-E_{\text {out }}\right|>\epsilon\right] \leq \delta
$$

The bias

In 1948, phones were expensive.

If the data is sampled in a biased way, learning will produce a similarly biased outcome.

Example: normal period in the market

Testing: live trading in real market

Matching the distributions

Methods to match training and testing distributions

Doesn't work if:

Region has $P=0$ in training, but $P>0$ in testing

Puzzle 3: Credit approval

Historical records of customers

Input: information on credit application:

Target: profitable for the bank

age	23 years
gender	male
annual salary	$\$ 30,000$
years in residence	1 year
years in job	1 year
current debt	$\$ 15,000$
\cdots	\cdots

Outline

- Occam's Razor
- Sampling Bias
- Data Snooping

The principle
If a data set has affected any step in the learning process, its ability to assess the outcome has been compromised.

Most common trap for practitioners - many ways to slip

```
*
```

```
*
```

```
*
```


Looking at the data

Remember nonlinear transforms?
$\mathbf{z}=\left(1, x_{1}, x_{2}, x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}\right)$
or $\mathbf{z}=\left(1, x_{1}^{2}, x_{2}^{2}\right)$ or $\mathbf{z}=\left(1, x_{1}^{2}+x_{2}^{2}\right)$
Snooping involves \mathcal{D}, not other information

Puzzle 4: Financial forecasting

Predict US Dollar versus British Pound

Normalize data, split randomly: $\mathcal{D}_{\text {train }}, \mathcal{D}_{\text {test }}$

Train on $\mathcal{D}_{\text {train }}$ only, test g on $\mathcal{D}_{\text {test }}$

$$
\Delta r_{-20}, \Delta r_{-19}, \cdots, \Delta r_{-1} \rightarrow \Delta r_{0}
$$

Reuse of a data set

Trying one model after the other on the same data set, you will eventually 'succeed' If you torture the data long enough, it will confess

VC dimension of the total learning model

May include what others tried!

Key problem: matching a particular data set

Two remedies

1. Avoid data snooping
strict discipline
2. Account for data snooping
how much data contamination

Puzzle 5: Bias via snooping

Testing long-term performance of "buy and hold" in stocks. Use 50 years worth of data

- All currently traded companies in S\&P500
- Assume you strictly followed buy and hold
- Would have made great profit!

Sampling bias caused by 'snooping'

