
Review of Leture 17
• Oam's Razor

The simplest model that�ts the data is also themost plausible.

omplexity of h ←→ omplexity of H
unlikely event←→ signi�ant if it happens

• Sampling bias
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• Data snooping
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It's a jungle out there
stochastic gradient descent

nonlinear transformation

overfitting  
data snooping

Occam’s razor

perceptrons

data contamination

error measures

cross validation

linear models

types of learning
kernel methods

logistic regression

training versus testing

VC dimension linear regression
deterministic noise

noisy targets   
bias−variance tradeoff

RBF

SVM

weight decay
regularization

soft−order constraint

sampling bias neural networks

exploration versus exploitation

weak learners

Gaussian processes

active learning

graphical models

decision trees 

ensemble learning

Bayesian prior

collaborative filtering

clustering

hidden Markov models

distribution−free

ordinal regression

Boltzmann machines

no free lunch

mixture of experts

Q learning

learning curves

semi−supervised learning

is learning feasible?
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The map
TECHNIQUES PARADIGMSTHEORY

VC

bias−variance

complexity

bayesian

unsupervised

reinforcement

supervised

online

active

neural networks

RBF

nearest neighbors

SVD

linear

SVM

aggregation

input processing
gaussian processes

graphical models

models methods

regularization

validation
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Probabilisti approah
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Extend probabilisti role to all omponents
P (D | h = f) deides whih h (likelihood)
How about P (h = f | D) ?
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The prior
P (h = f | D) requires an additional probability distribution:

P (h = f | D) =
P (D | h = f) P (h = f)

P (D)
∝ P (D | h = f) P (h = f)

P (h = f) is the prior
P (h = f | D) is the posterior
Given the prior, we have the full distribution
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Example of a prior
Consider a pereptron: h is determined by w = w0, w1, · · · , wd

A possible prior on w: Eah wi is independent, uniform over [−1, 1]

This determines the prior over h - P (h = f)

Given D, we an ompute P (D | h = f)

Putting them together, we get P (h = f | D)

∝ P (h = f)P (D | h = f)
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A prior is an assumption
Even the most �neutral� prior:

x is  unknown

1−1
x

P(x)

x is  random

Hi

Hi

−1 1

The true equivalent would be:
x is  unknown

1−1
x

x is  random

Hi

Hi

−1 1a

δ −a(x    )
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If we knew the prior
. . . we ould ompute P (h = f | D) for every h ∈ H

=⇒ we an �nd the most probable h given the data
we an derive E(h(x)) for every x

we an derive the error bar for every x

we an derive everything in a prinipled way
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When is Bayesian learning justi�ed?
1. The prior is validtrumps all other methods
2. The prior is irrelevantjust a omputational atalyst
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What is aggregation?
Combining di�erent solutions h1, h2, · · · , hT that were trained on D:

Hi

Hi

Regression: take an average
Classi�ation: take a vote
a.k.a. ensemble learning and boosting© AM
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Di�erent from 2-layer learning
In a 2-layer model, all units learn jointly: training   data

Algorithm

Learning

Hi

Hi

In aggregation, they learn independently then get ombined:
training   data

Algorithm

Learning

Hi

Hi
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Two types of aggregation
1. After the fat: ombines existing solutions

Example. Net�ix teams merging �blending�
2. Before the fat: reates solutions to be ombined

Example. Bagging - resampling D

training   data

Algorithm

Learning

Hi

Hi
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Deorrelation - boosting
Create h1, · · · , ht, · · · sequentially: Make ht deorrelated with previous h's:

training   data

Algorithm

Learning

Hi

Hi

Emphasize points in D that were mislassi�ed
Choose weight of ht based on Ein(ht)
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Blending - after the fat
For regression, h1, h2, · · · , hT −→ g(x) =

T∑

t=1

αt ht(x)

Prinipled hoie of αt's: minimize the error on an �aggregation data set� pseudo-inverse
Some αt's an ome out negative
Most valuable ht in the blend?
Unorrelated ht's help the blend
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Course ontent
Professor Malik Magdon-Ismail, RPI
Professor Hsuan-Tien Lin, NTU
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Course sta�
Carlos Gonzalez (Head TA)

Ron Appel
Costis Sideris

Doris Xin
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Filming, prodution, and infrastruture
Leslie Max�eld and the AMT sta�
Rih Fagen and the IMSS sta�
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Calteh support
IST - Mathieu Desbrun
E&AS Division - Ares Rosakis and Mani Chandy
Provost's O�e - Ed Stolper and Melany Hunt
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Many others
Calteh TA's and sta� members
Calteh alumni and Alumni Assoiation
Colleagues all over the world
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