Review of Lecture 17

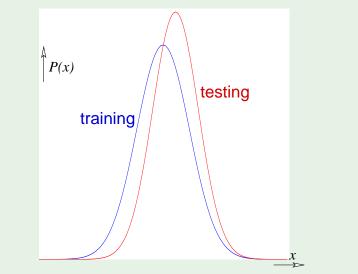
• Occam's Razor

The simplest model that fits the data is also the most plausible.

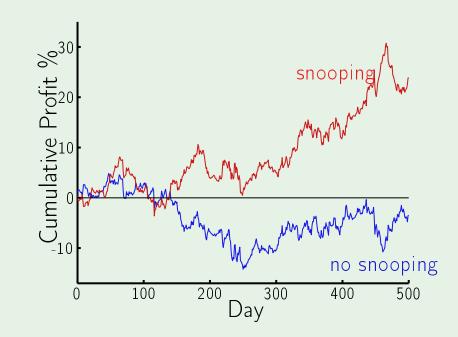
complexity of $h \leftrightarrow$ complexity of \mathcal{H}

unlikely event \longleftrightarrow significant if it happens

• Sampling bias



• Data snooping

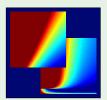


Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 18: Epilogue

Sponsored by Caltech's Provost Office, E&AS Division, and IST • Thursday, May 31, 2012



Outline

- The map of machine learning
- Bayesian learning
- Aggregation methods
- Acknowledgments

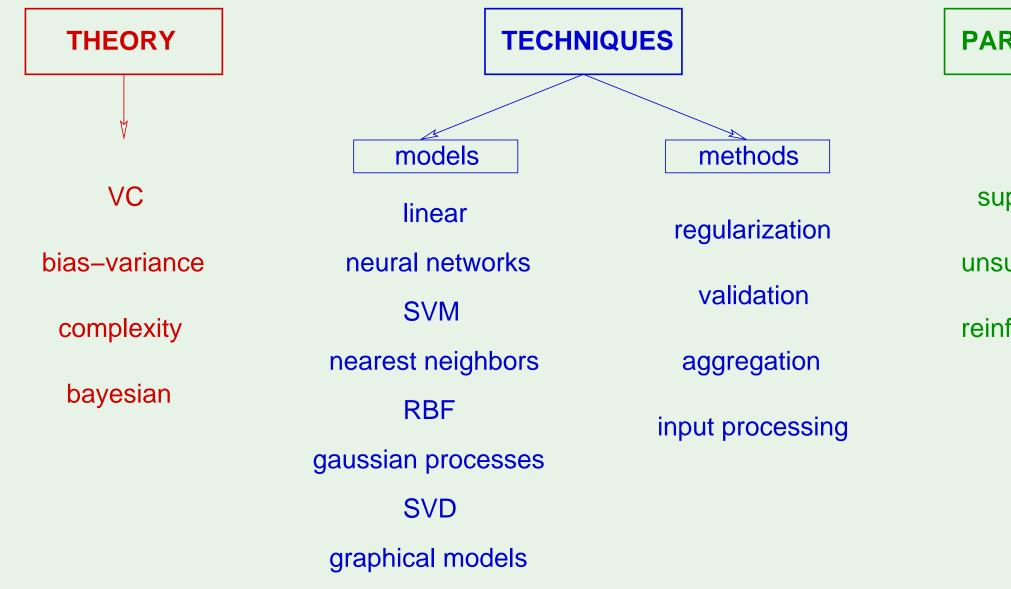
2/23

It's a jungle out there

stochastic gradient descent semi-supervised learning overfitting SV **Gaussian processes** deterministic noise data snooping distribution_free linear regression **VC** dimension collaborative filtering sampling bias nonlinear transformation neural net decision trees training versus testing RBF noisy target active learning linear models bias-variance tradeoff We ordinal regression logistic regression data contamina cross validation ensemble learning types of learning perceptrons error measures kernel methods gra ploration versus exploitation soft-order constra is learning feasible? weight decay clustering Occam's razor regularization

M	Qlearning
le	arning curves
	mixture of expe
twor	ks no free
ts	Bayesian prior
ak	learners
tion	
h	idden Markov mo
phical models	
aint	t
	Boltzmann mach

The map



PARADIGMS

supervised

unsupervised

reinforcement

active

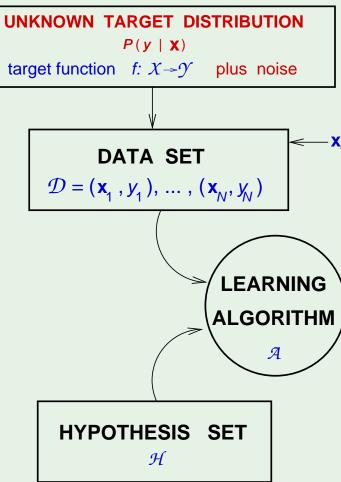
online

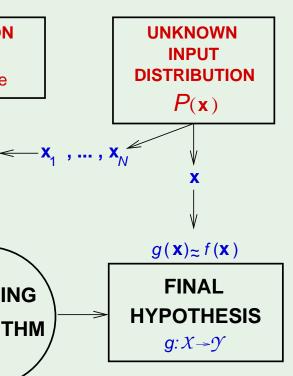
Outline

- The map of machine learning
- Bayesian learning
- Aggregation methods
- Acknowledgments

Probabilistic approach

Extend probabilistic role to all components $P(\mathcal{D} \mid h = f)$ decides which h (likelihood) How about $P(h = f \mid \mathcal{D})$?





The prior

 $P(h = f \mid \mathcal{D})$ requires an additional probability distribution:

$$P(\mathbf{h} = f \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \mathbf{h} = f) P(\mathbf{h} = f)}{P(\mathcal{D})} \propto P(\mathcal{D} \mid \mathbf{h} = f)$$

$$P(h = f)$$
 is the **prior**

 $P(h = f \mid D)$ is the **posterior**

Given the prior, we have the full distribution

P(h = f)

Example of a prior

Consider a perceptron: h is determined by $\mathbf{w} = w_0, w_1, \cdots, w_d$

A possible prior on w: Each w_i is independent, uniform over [-1,1]

This determines the prior over h - P(h = f)

Given \mathcal{D} , we can compute $P(\mathcal{D} \mid h = f)$

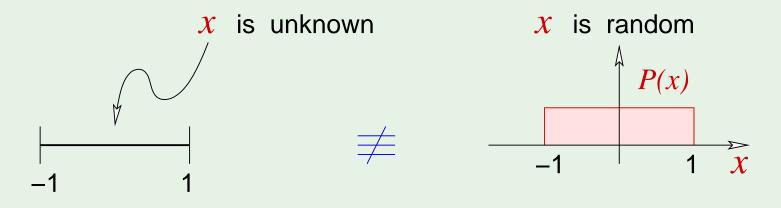
Putting them together, we get $P(h = f \mid \mathcal{D})$

$$\propto P(h = f)P(\mathcal{D} \mid h)$$

= f

A prior is an assumption

Even the most "neutral" prior:



The true equivalent would be:

If we knew the prior

 \ldots we could compute $P(h = f \mid \mathcal{D})$ for every $h \in \mathcal{H}$

 \implies we can find the most probable h given the data

we can derive $\mathbb{E}(h(\mathbf{x}))$ for every \mathbf{x}

we can derive the error bar for every ${f x}$

we can derive everything in a principled way

When is Bayesian learning justified?

1. The prior is **valid**

trumps all other methods

2. The prior is **irrelevant**

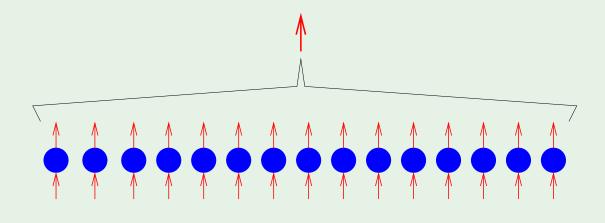
just a computational catalyst

Outline

- The map of machine learning
- Bayesian learning
- Aggregation methods
- Acknowledgments

What is aggregation?

Combining different solutions h_1, h_2, \cdots, h_T that were trained on \mathcal{D} :



Regression: take an average

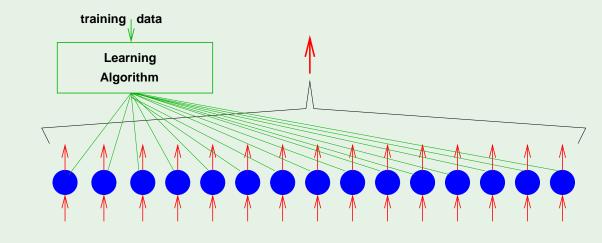
Classification: take a vote

a.k.a. ensemble learning and boosting

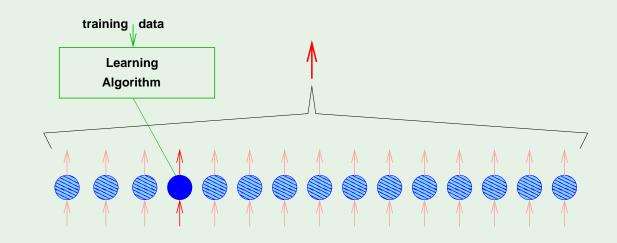
© A Creator: Yaser Abu-Mostafa - LFD Lecture 18

Different from 2-layer learning

In a 2-layer model, all units learn **jointly**:



In aggregation, they learn **independently** then get combined:



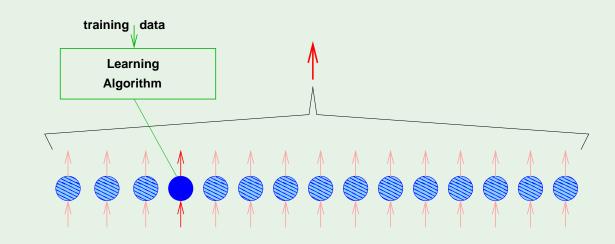
Two types of aggregation

1. After the fact: combines existing solutions

Example. Netflix teams merging "blending"

2. Before the fact: creates solutions to be combined

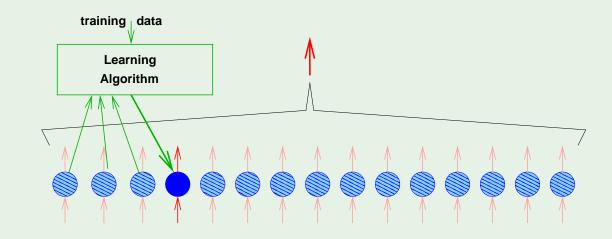
Example. Bagging - resampling \mathcal{D}



(C) A Creator: Yaser Abu-Mostafa - LFD Lecture 18

Decorrelation - boosting

Create h_1, \dots, h_t, \dots sequentially: Make h_t decorrelated with previous h's:



Emphasize points in \mathcal{D} that were misclassified

Choose weight of h_t based on $E_{in}(h_t)$

© 🎢 Creator: Yaser Abu-Mostafa - LFD Lecture 18

Blending - after the fact

For regression,
$$h_1, h_2, \cdots, h_T \longrightarrow g(\mathbf{x}) = \sum_{t=1}^T \alpha_t h_t(\mathbf{x})$$

Principled choice of α_t 's: minimize the error on an "aggregation data set" pseudo-inverse

Some α_t 's can come out negative

Most valuable h_t in the blend?

Outline

- The map of machine learning
- Bayesian learning
- Aggregation methods
- Acknowledgments

Professor Malik Magdon-Ismail, RPI

Professor Hsuan-Tien Lin, NTU

Creator: Yaser Abu-Mostafa - LFD Lecture 18

Course staff

Carlos Gonzalez (Head TA)

Ron Appel

Costis Sideris

Doris Xin

ⓒ Æ Creator: Yaser Abu-Mostafa - LFD Lecture 18

Filming, production, and infrastructure

Leslie Maxfield and the AMT staff

Rich Fagen and the IMSS staff

© ₱ Creator: Yaser Abu-Mostafa - LFD Lecture 18

Caltech support

IST - Mathieu Desbrun

E&AS Division - Ares Rosakis and Mani Chandy

Provost's Office - Ed Stolper and Melany Hunt

Many others

Caltech TA's and staff members

Caltech alumni and Alumni Association

Colleagues all over the world

ⓒ ₱ Creator: Yaser Abu-Mostafa - LFD Lecture 18

23/23

To the fond memory of

Faiza A. Ibrahim