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I. INTRODUCTION

The calibration of a �nancial model is the process of tuning the model parameters

to �t market data. Unlike the parameters of generic learning models such as neural

networks, the parameters of �nancial models correspond to economic and �nancial

quantities. For instance, they might correspond to the volatility of a given market, or

to the steady-state interest rate. These semantic aspects of the parameters are often

lost in the process of `curve �tting'. We may end up with a good �t that nonetheless

assigns improbable or contradictory values to the parameters. For instance, we may

�t the prices of bonds very well, only to �nd that a volatility parameter in the formula

is 5 times what it should be. Such an inconsistency needs to be avoided since the

plausibility of the solution depends on the plausibility of the model it is based on.

In order to force the calibration process to conform with the characteristics of the model

parameters, we will supplement it with consistency hints about these parameters.

Hints [2,3] are the auxiliary pieces of information appended to the data to help direct

the learning process towards more plausible solutions. Consistency hints can have a

dramatic impact on the calibration. A case in point is illustrated in �gures 1 and 2.

Figure 1 shows the results of �tting market data with and without consistency hints.

Both �ts appear to be equally good, and the hints do not seem to make a di�erence.

However, a huge di�erence is shown in �gure 2. Using the parameter values from

the two calibrations of �gure 1, we computed the market volatility implied by these

parameters. When the hints are used, the volatility is in almost perfect agreement

with the historical value it is meant to predict. When the hints are not used, the

volatility is completely o�. This contrast could not have been detected by comparing

the two �ts of �gure 1, on which the calibrations were based.

Hints were �rst introduced in the context of neural networks [1] to reduce over�tting,

which results from having too many weights [12]. Such redundancy allows the learning

algorithm to �t idiosyncrasies of the training data that have nothing to do with the

function being learned. Inconsistency in calibration is a manifestation of over�tting,

too. As we saw in �gure 1, we can �t the same set of market data with di�erent

sets of parameters, some consistent and some not. This means that the parameters

are redundant, and therefore susceptible to over�tting. Since hints must always be

valid properties in the context they are used, they will steer the �t towards the more

consistent solution.

The calibration of complex models is more prone to over�tting than that of simple

models, since complex models have more parameters that can be exploited in the �t.

Without techniques such as consistency hints, complex models may have to be avoided
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Figure 1: The results of calibrating a �nancial model to swaps market data, with and without consistency

hints. The two �ts are virtually indistinguishable.

altogether because of this drawback. However, these complex models are needed to

explain the behavior of �nancial markets more accurately. For instance, multi-factor

interest rate models are more realistic in representing the behavior of interest rates

than single-factor models. Consistency hints impose an increasingly tighter constraint

on higher-order models, thus regulating the over�tting potential proportionately.

Depending on the application, the use of consistency hints may be crucial to the �nal

results. Although the calibration is concerned with �tting market data, we are not

just after a good �t, but also a correct �t. The �t may be only a means to infer

other quantities, such as the volatility of �gure 2. The �t may also be used to help a

speci�c application, such as relative-value trading, which is based on whether the model
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Figure 2: The volatility term structure of forward rates (6 months to 20 years) corresponding to the

�ts of �gure 1. In spite of those �ts being almost identical, the theoretical volatility in (a) is in gross

violation of the historical volatility it is supposed to predict, while in (b) they are in almost perfect

agreement. Consistency hints are not used in (a), but used in (b).

prediction is higher or lower than the current market value. Even for two equally good

�ts like those of �gure 1, this prediction can be di�erent. For instance, the model

prediction of the 15-year par rate is higher than the market value when hints are used,

but it is about the same as the market value when hints are not used. If we are going

to base a trade on the model prediction, we must have a reason to believe that one �t

or the other is more credible, beyond just being a good-looking �t.

To describe how consistency hints are used in �nancial model calibration, we will con-

sider a multi-factor interest rate model. Section II introduces this model and develops
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the basic framework for calibration. Section III de�nes consistency hints and derives

the formulas that quantify the hint errors. Section IV discusses implementation issues

and experimental results. Section V takes a look at calibration from a probabilistic

point of view, and provides a more principled framework for our techniques, including

the introduction of canonical errors. Finally, for self su�ciency, the Appendix provides

brief mathematical derivations for the main functions of the interest rate model we

use.

II. THE INTEREST-RATE MODEL

Interest-rate models are among the more sophisticated �nancial models, and their

calibration is quite challenging. We are going to use the Vasicek model for interest rates

[14,18] as a paradigm for employing consistency hints in the calibration of �nancial

models. This concrete example will enable us to do a full derivation of the consistency

hint equations and to illustrate the numerical results using real-life data. It is fairly

straightforward to adapt our method to the calibration of other interest-rate models

that have analytic solutions, as well as to analogous �nancial models that deal with

other markets.

Vasicek Model

The premise of the Vasicek model is that the evolution of interest rates in time is

driven by two forces. The �rst is a `drift' towards a steady-state or equilibrium value

of what the interest rate should be. The second is an injection of random movements

into the interest rate as a result of the unpredictable economic environment. How

these two forces interact is what de�nes a Vasicek model.

In its simplest form, the model uses a steady-state interest rate �, a speed k of con-

verging to that steady state, and a volatility or `randomness level' �, to describe the

instantaneous interest rate as a function x governed by the equation

dx = k(� � x)dt+ �dW

where dt is the in�nitesimal increment in time, and dW is an in�nitesimal stochastic

variable (W is formally a Wiener process). The drift element is captured by the

k(� � x)dt portion of dx, and indeed this term pushes x towards �. If x > �, this

term is negative, hence x will drift downwards towards �, while if x < �, this term

is positive hence x will drift upwards, again towards �. The value of k modulates

the change dx that results in this drift, and hence determines the speed of converging

to the steady state �. The �dW portion of dx adds the random component to the

interest rate. x accumulates the di�erent �dW 's that occur as time goes by, but this
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accumulated random component is subject to decaying as x drifts towards � by virtue

of the k(�� x)dt term. Figure 3 shows an evolution of the instantaneous interest rate

under this model.
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Figure 3: Simulation of instantaneous interest rates under the Vasicek model. Two scenarios with

di�erent volatilities are presented for the same steady-state rate of 6%, and the same mean reversion

speed.

The focus of this paper is not the stochastic di�erential equation (SDE) itself, but the

functions of interest rate that are derived from the SDE. The parameters of the SDE

will appear in the expressions of these functions (see the Appendix), and when the

functions are calibrated to market data, the values of the parameters are determined.

The understanding of what these parameters signify and how they interact is important

to appreciate how consistency hints come into play.

With this in mind, let us illustrate the more general form of the Vasicek model. This

form is called the multi-factor model because it asserts that the interest rate is not

just a single x as in the above equation, but rather a superposition of several x's of

analogous form. These x's are the `factors', and each of them follows the same basic

equation. Thus,

dx

n

= k

n

(�

n

� x

n

)dt+ �

n

dW

n
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for n = 1; :::; N where N is the number of factors. The interest rate r is given by the

sum of these factors

r =

N

X

n=1

x

n

The philosophy behind having multiple factors stems from the observation that there

are di�erent time scales for the behavior of interest rates. Some aspects of this behavior

are observed in a short time horizon (high-speed factors or large k

n

), and some aspects

are observed in a longer horizon (low-speed factors or small k

n

). Each factor has its

own steady-state �

n

and its own volatility �

n

. The corresponding stochastic elements

dW

n

are not always independent, hence there are correlation coe�cients �

ij

between

dW

i

and dW

j

as part of the model parameters. The model is sometimes referred to as

a correlated multi-factor Vasicek.

It is obvious that the multi-factor model provides more 
exibility for �tting the data by

introducing more parameters that can be exploited in the calibration process. There-

fore, a 3-factor Vasicek model is more powerful than a 2-factor Vasicek model. By the

same token, the 3-factor Vasicek model will be more prone to over�tting, i.e., to �tting

the idiosyncrasies of a particular data set at the expense of proper generalization to

new data, because it has more resources for such a �t. This problem limits the number

of factors that can be used in practice, even if more factors are needed to model real

markets. Multi-factor models need techniques like the ones we are introducing in this

paper to be reliably calibrated. Consistency hints constrain the multitude of parame-

ters in these models so as to keep over�tting in check. The constraining is based on

legitimate rules that may be inadvertently violated if the calibration is done without

the hints.

Calibration

We now address how the Vasicek model is used to �t market data, or, equivalently,

how market data is used to calibrate the Vasicek model. Let p denote the vector

of all the parameters in the Vasicek N -factor model. A market function related to

interest rates, be it the price of a 30-year bond or the yield of 3-month CD, will have a

theoretical value based on the model that is function of p, say f(p). It will also have

an actual value observed in the market, say

~

f . If the model is correct, and the value

of p is chosen properly, we would have

f(p) =

~

f

Since the model is not perfect, we have to settle for a f(p) that comes closest to the

above equation. For instance, we can pick the value of p that minimizes the error

function

E

0

=

�

f(p)�

~

f

�

2
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If we have several market functions f

1

; :::; f

M

, say the prices of bonds of di�erent

maturities, we can minimize

E

0

= E

0

(p) =

M

X

m=1

�

f

m

(p)�

~

f

m

�

2

Variations of this error measure are of course possible. We will refer to this error as

the �t error, as distinct from the consistency error to be introduced in section III.

Calibrating the model to market data is the process of determining p that minimizes

the error. It is no di�erent from computing the weights of a neural network by mini-

mizing the error between the network prediction and the actual data, except that the

`weights' here are parameters coming from a �nancial model.

The Appendix shows how f

m

(p) can be derived from the Vasicek model SDE's for

di�erent market functions. Once a formula for f

m

(p) is obtained, the calibration

process can proceed without involving the SDE's themselves. In our experiments, we

use two sets of market functions. The �rst set consists of par rates in the Japanese Yen

swaps market, and the second set consists of the yield of the US Dollar for di�erent

maturities. The market values for the swaps and the yield can change from day to day,

if not from moment to moment. Therefore, the calibration attempts to simultaneously

�t quantities occurring at di�erent times, e.g., at the daily close of the market. The

same notation of f

m

(p) will still work in this case since the index m = 1; :::;M can refer

to the same type of function but at di�erent times, or to di�erent types of functions.

As long as there is a model-based formula for each f

m

(p) used in the �t, no notational

distinction is needed.

Discrete Time

If we calibrate the Vasicek model based on market data available at a discrete-time

sequence t[1] < t[2] < ::: < t[l] < ::: < t[L], e.g., at the daily close of the market, it is

helpful to view the model through discrete-time di�erence equations that approximate

the continuous-time SDE's (see the Appendix for more details). The index l of the

discrete-time sequence is made explicit in these di�erence equations.

�x

n

[l] = k

n

(�

n

� x

n

[l])�t[l] + �

n

w

n

[l]

q

�t[l]

for n = 1; :::; N and l = 1; :::; L� 1, where

�t[l] = t[l+ 1]� t[l] l = 1; :::; L� 1

�x

n

[l] = x

n

[l+ 1]� x

n

[l] l = 1; :::; L� 1 and n = 1; :::; N

The stochastic elements w

n

[l] are normally distributed with zero mean and a covariance

given by

E (w

i

[l]w

j

[l]) = �

ij

8



for i; j = 1; :::; N and l = 1; :::; L� 1, with �

ii

= 1. Each w

n

[l] is independent of all the

others with di�erent l. The instantaneous interest rate r is given by

r[l] =

N

X

n=1

x

n

[l] l = 1; :::; L and n = 1; :::; N

Numerical simulations of the Vasicek model, such as the one used to generate �gure

3, are based on this discrete-time version.

The discrete model spells out the parameters p that go into the calibration process.

p consists of long-term parameters or constants, and short-term parameters or state

variables. The long-term parameters, denoted by p

L

, are

speeds of mean reversion : k

n

n = 1; :::; N

steady � state means : �

n

n = 1; :::; N

volatilities : �

n

n = 1; :::; N

correlations : �

ij

i; j = 1; :::; N

Long-term parameters are constant w.r.t. the time index l. Short-term state variables,

denoted by p

S

, depend on l.

state variables : x

n

[l] n = 1; :::; N and l = 1; :::; L

There is a total of

1

2

(N

2

+ 5N) long-term parameters

1

in an N -factor Vasicek model,

and a total of NL state variables when we have market data at L discrete time in-

stances. Hence

p = (p

L

;p

S

) has

N

2

(N + 2L+ 5) parameters

Once both p

L

and p

S

are determined through calibration, the values of the stochastic

elements w

n

[l] can be solved for using the model di�erence equations. It is through

w

n

[l] that consistency will be de�ned.

III. CONSISTENCY HINTS

The calibration of a Vasicek model infers the values of the parameters p by minimizing

the error between the model-based functions f

m

(p) and the market values

~

f

m

. As we

have shown in �gures 1a and 2a, it is possible to attain a very small error between

f

m

(p) and

~

f

m

, while creating a huge discrepancy between other model-based functions

and their market values. It is conceivable that the problem is inherent, i.e., the model

1

Counting �

ij

for only i > j since �

ii

= 1 and �

ij

= �

ji
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is not powerful enough to match all these quantities simultaneously. However, as we

saw in �gures 1b and 2b, the Vasicek model has no such limitation. There is another

`consistent' solution for the parameters p that achieves an equally good �t without

the discrepancy. Indeed, the redundancy of the parameters p in the expression of

f

m

(p) allows for several solutions, possibly in�nitely many. Some of these solutions

are consistent, and some are not. How do we make sure that the calibration process

picks a consistent p? To answer this, we �rst need to spell out exactly what it means

for p to be consistent.

Consistency

The criterion for consistency cannot be based merely on the ability to �t many quan-

tities simultaneously, for the issue would then be confused with the sheer power of the

model. Instead, consistency would reconcile the role of p as generic parameters in a

formula f

m

(p) used for �tting, with their role as meaningful quantities in the basic

equations that gave rise to that formula. In doing so, it produces parameters that

stand the best chance of �tting other functions that can be legitimately derived from

the same set of basic equations.

Let us see how this applies to the Vasicek model. Consider the basic equation of the

discrete-time version

�x

n

[l] = k

n

(�

n

� x

n

[l])�t[l] + �

n

w

n

[l]

q

�t[l]

After the calibration is done, one can substitute the values of the �tted parameters in

the above equation and solve for the `implied' w

n

[l], i.e., the particular realization of the

stochastic elements w

n

[l] that must have occurred to generate this �t. However, there

are basic assumptions about the statistics of w

n

[l] that were utilized in deriving the

f

m

(p) functions used for the �t. If the implied w

n

[l] do not satisfy these assumptions,

the �t is inconsistent with the model it is based on. This leads us to the following rule

Consistency Hint: The stochastic elements implied by the �t should obey the statistical

assumptions of the model.

This rule enforces the desired property at the level of the building blocks of the model.

The consistency of other `higher level' functions will follow suit, since they are derived

from these building blocks. Indeed, the discrepancy of �gure 2a can be traced back to a

violation of the consistency hint. Figure 4 shows the histograms and scatter diagrams

of w

n

[l] without the hint. Also shown are the theoretical curves of where things should

be according to the assumptions of the model. Figure 4 corresponds to the �t of �gure

1a, and it is interesting to see how such a legitimate-looking �t has the hidden gross

violation of statistics depicted in �gure 4.
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Figure 4: Histograms and scatter diagrams of the implied stochastic elements from a calibration without

consistency hints. The superimposed curves are the theoretical density and the �, 2�, and 3� contours

that the sample is supposed to follow, but grossly violates.

Figure 5 shows that the histograms and scatter diagrams are far better behaved when

the hint is used. These correspond to the �t of �gure 1b and the volatility term

structures of �gure 2b. As we argued, the higher-level functions in �gure 2 inherit the

consistency of the basic model.
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Figure 5: Histograms and scatter diagrams of the implied stochastic elements from a calibration with

consistency hints. The superimposed curves are the theoretical density and the �, 2�, and 3� contours.

Compared to �gure 4, the theoretical distributions are largely followed.

Entropy Measure

To formalize the consistency hint, we need to quantify the agreement/disagreement

between the distribution of the implied w

n

[l] and the distribution of the theoretical

w

n

[l]. One obvious way of doing this is by measuring the Kullback-Leibler distance

12



K(pjjq) [9] between the two distributions. Given two probability density functions

(pdf's) p(u) and q(u), K(pjjq) is de�ned by

K(pjjq) =

Z

p(u) log

p(u)

q(u)

du

The Kullback-Leibler distance has the property that K(pjjq) � 0 with equality if, and

only if, p = q. It can serve as an `error function' to be minimized in order to match p

to q.

Let w[l] = (w

1

[l]; w

2

[l]; :::; w

N

[l])

T

(column vector), and let p(w) be the pdf of the

implied w[l]

2

and q(w) be the pdf of the theoretical w[l]. While q can be written

explicitly as a Gaussian in terms of the model parameters, p is not explicitly known.

It is only represented by a sample (the implied w[l]; l = 1; :::; L�1 that p `generated').

To evaluate K(pjjq), we can employ density estimation techniques [17] to get p, then

evaluate the integral. Alternatively, we can try to estimate the integral directly from

the sample. We can rewrite

3

K(pjjq) =

Z

p(w) log

1

q(w)

dw �

Z

p(w) log

1

p(w)

dw

The �rst term is the cross entropy between p and q, and the second term is the entropy

of p. Since the form of p is unknown, we use the maximum-entropy principle [16] to

estimate the second term. If P is the covariance matrix of p, the maximum-entropy

value of

R

p(w) log

1

p(w)

dw occurs when p is Gaussian. We evaluate this integral and

further reduce the expression of K(pjjq) to

4

1

2

�

log(jQj) +

Z

p(w)(w

T

Q

�1

w)dw� log(jP j)�N

�

where j:j denotes the determinant, Q = [�

ij

] is the covariance matrix of q (�

ij

come

from the Vasicek model), and N is the dimension of w (the number of Vasicek factors).

To estimate the remaining integral, we use the sample average

5

1

L� 1

L�1

X

l=1

w[l]

T

Q

�1

w[l] ;

and to estimate jP j, we use the sample covariance matrix � of w[l]; l = 1; :::; L� 1.

Hence, we get the entropy-based expression

1

2

 

log(jQj)� log(j�j)�N +

1

L� 1

L�1

X

l=1

w[l]

T

Q

�1

w[l]

!

2

Assuming the implied w[l] are identically distributed for di�erent l, like their theoretical

counterparts.

3

We use a simpli�ed notation for the multiple integral.

4

Throughout the paper, we use standard properties of Gaussian distributions [6,8,10,11].

5

An e�cient estimator if w[l] are statistically independent for di�erent l.

13



as an estimate for K(pjjq) that can be completely determined from the model param-

eters. Dropping the

1

2

, we arrive at our �rst consistency hint error function

E

1

= log(jQj)� log(j�j)�N +

1

L� 1

L�1

X

l=1

w[l]

T

Q

�1

w[l]

which becomes part of the overall objective function together with the �t error E

0

.

Notice that E

1

is an `optimistic' estimate, since the actual entropy of p may not be as

big as the maximum-entropy estimate. Notice also that �nite-sample variations may

drive the value of E

1

slightly negative (�gure 10a) in spite of K(pjjq) being strictly

non-negative.

Initial State

The error function E

1

quanti�es the consistency of the stochastic elements w[l]; l =

1; :::; L�1. In addition tow[l], there is another stochastic element in the Vasicek model,

which is the initial state x[1] = (x

1

[1]; x

2

[1]; :::; x

N

[1])

T

. The initial state is stochastic

because it accumulates all the stochastic elements that happened from t = �1 until

t = t[1], the earliest time in which market data is available for calibration. To �nd the

statistics of the initial state, we start from the integral equation for the continuous-time

x

n

in the Appendix.

x

n

(t

2

) = x

n

(t

1

)e

�k

n

(t

2

�t

1

)

+ �

n

(1� e

�k

n

(t

2

�t

1

)

) + �

n

e

�k

n

t

2

Z

t

2

t

1

e

k

n

�

dW

n

(�)

Substituting t

1

= �1 and t

2

= t (the initial time), we get

x

n

(t) = �

n

+ �

n

e

�k

n

t

Z

t

�1

e

k

n

�

dW

n

(�)

Therefore, the initial x

n

are jointly Gaussian with mean

E(x

n

) = �

n

and covariance

E((x

i

� �

i

)(x

j

� �

j

)) =

�

i

�

j

�

ij

k

i

+ k

j

by an argument similar to that in the Appendix.

x[1] together with w[l]; l = 1; :::; L� 1 determine all the state variables of the model

by induction. Since x[1] is independent of w[l], consistency would also require that

the implied x[1] be reconciled with the model statistics. De�ning consistency for x[1]

is more problematic than for w[l], since we have a single implied x[1] as opposed to
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L� 1 implied elements in the case of w[l]. One de�nition is based on maximizing the

value of the pdf, which results in the hint error function

E

2

= log(jSj) + (x[1]��)

T

S

�1

(x[1]��)

where � = (�

1

; :::; �

N

)

T

, and S is the covariance matrix [

�

i

�

j

�

ij

k

i

+k

j

]. Another related

de�nition drops the log(jSj) term from the expression of E

2

. This version measures

how far the initial state is from its expected value, in units of variance along each

coordinate.

The three errors E

0

, E

1

, and E

2

are merged to create a single objective function

^

E(E

0

; E

1

; E

2

) to be minimized.

^

E(E

0

; E

1

; E

2

) can be a simple weighted sum of E

0

,

E

1

and E

2

, as we used in the experiments of section IV, or can be a more principled

combination as discussed in section V.

IV. IMPLEMENTATION

In this section, we address the practical aspects of calibration using consistency hints,

and discuss experimental results for Japanese Yen swaps and US Dollar yield data.

The Algorithm

Let t[1] < t[2] < ::: < t[L] be the calibration window, i.e., the times when market data

are available, and let

~

f

m

; m = 1; :::;M , be the market data. The calibration algo-

rithm determines the values of the parameters p that optimize the objective function

^

E(E

0

; E

1

; E

2

). First, we describe how the algorithm evaluates

^

E for a given p, then

we turn our attention to optimization.

p consists of long-term parameters p

L

, namely the Vasicek constants k

n

; �

n

; �

n

; �

ij

,

and short-term parameters p

S

, namely the state variables x

n

[l]. Given p

L

and p

S

,

we can evaluate the market functions f

m

(p); m = 1; :::;M using the formulas derived

in the Appendix. Therefore, we can evaluate E

0

=

P

M

m=1

�

f

m

(p)�

~

f

m

�

2

. To evaluate

E

1

, we need the implied stochastic elements w[l]; l = 1; :::; L � 1. We can solve for

w

n

[l]; l = 1; :::; L� 1, n = 1; :::; N , in terms of x

n

[l]; l = 1; :::; L, n = 1; :::; N , using the

Vasicek di�erence equations. We get

w

n

[l] =

(x

n

[l+ 1]� x

n

[l])� k

n

(�

n

� x

n

[l])(t[l+ 1]� t[l])

�

n

q

t[l + 1]� t[l]

To evaluate E

2

, we use the initial state x

n

[1]; n = 1; :::; N . Finally, E

0

, E

1

, and E

2

are substituted into the expression for

^

E(E

0

; E

1

; E

2

). We thus have evaluated

^

E as a

function of p.
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For optimization, since

^

E is highly non-linear in p, an iterative method such as con-

jugate gradient [7] is employed. The gradient of

^

E is needed for such a method, but a

numerical gradient can be used. At every iteration, the gradient of

^

E w.r.t. all param-

eters is evaluated. This creates a computational bottleneck, since a typical calibration

may have more than 1000 parameters.

A closer look at the functional dependencies reveals that the errors and parameters can

be organized into two categories, leading us to a more e�cient, EM-type optimization

[5]. The short-term parameters p

S

are handled separately from the long-term param-

eters p

L

, and the �t error E

0

is handled di�erently from the hint errors E

1

and E

2

.

The algorithm works as follows.

Initialize p

L

to a �xed value, and initialize the corresponding p

S

by minimizing E

0

.

Repeat the following two steps:

1. Minimize

^

E(E

0

; E

1

; E

2

) w.r.t. p

L

, while holding p

S

constant.

2. Minimize E

0

w.r.t. p

S

, while holding p

L

constant.

In step 1, the state variables are �xed, and the objective function

^

E is minimized

w.r.t. the long-term parameters (12 in total for the 3-factor Vasicek used in our

experiments). Step 2, as well as the initialization step, minimize the �t error E

0

only. The function f

m

(p), which is the main ingredient of E

0

, depends on the long-

term parameters and only N state variables (those corresponding to time t[l], when the

data point

~

f

m

is observed). Therefore, for �xed long-term parameters, each term in the

sum E

0

=

P

M

m=1

�

f

m

(p)�

~

f

m

�

2

can be minimized separately w.r.t. only N variables

(N = 3 in our experiments). Notice that, while the total number of parameters grows

with the size of the calibration window L, the number of parameters to be optimized

at one time using this algorithm does not change, which allows the computation to

scale well.

In spite of having no guarantee of convergence (since the two steps have di�erent

objective functions), the algorithm works well in practice. It usually reaches a good

value of

^

E in less than 20 iterations of steps 1 and 2.

Since the values of k

n

; �

n

; �

ij

are constrained by the model (k

n

> 0, �

n

� 0, and [�

ij

]

is positive de�nite), the optimization in question is a constrained type. However, the

constraints can be enforced by de�ning k

n

in terms of another variable �

n

as e

�

n

or

�

2

n

+�, by absorbing the sign of �

n

in �

ij

, and by adding a penalty term if any eigenvalue

of [�

ij

] becomes smaller than �. Within few iterations, the solution usually steers clear

of the penalty area.
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Experimental Results

We ran the calibration algorithm with and without consistency hints on two sets of

interest rate market data, the Japanese Yen swaps and the US Dollar yield. In both

cases, we calibrated a 3-factor Vasicek model on daily market data, using the market

close values for 9 di�erent maturities of swaps and yield. The following table compares

the two data sets.

Speci�cations of the Data

JPY Swaps USD Yield

Dates 11/27/96 - 3/20/98 1/1/84 - 12/31/88

Calibration Window size 343 trading days 1247 trading days

Maturities in years 0.5,1,2,3,5,7,10,15,20 0.25,0.5,1,2,3,5,7,10,30

Average Interest Rate 1.78 % 8.73 %

Market Conditions crisis

6

, non-trending normal, trending

The goal of these experiments is to assess how consistency hints a�ect calibration,

rather than to evaluate the calibration method itself, the Vasicek model, or the opti-

mization algorithm. Figures 1,2,4,5 in the previous sections show the results of the JPY

swaps experiment. We now present additional results from the USD yield experiment.

Figure 6 shows the time evolution of the three state variables of the Vasicek model

when the USD yield calibration uses consistency hints. Also shown is the theoretical

range within which these variables should (and do) evolve. In contrast, �gure 7 shows

the case without the hints. The state variables are in gross violation of the range they

should lie within.

Figure 8 shows the time evolution of the instantaneous rate for the USD yield, with

and without the hints. In spite of the two calibrated models being quite di�erent,

the instantaneous rates are similar, since they a�ect the value of the yield and we are

using the same yield data in both cases. The situation is analogous to �gures 1 and 2,

where just looking at the two �ts would not reveal the fundamental di�erences between

the underlying models, but these di�erences result in vastly di�erent volatility term

structures.

Finally, we show the impact of enforcing consistency hints on the quality of the �t. It

is conceivable that the hints may signi�cantly constrain the �tting of the data, and

a much worse �t error would result. However, as we see in �gure 9, the impact is

negligible in this case.

6

The onset of the Asian crisis in 1997 in
ated the short-term rates by what was called the `Japan

premium'.
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Figure 6: Time evolution of the state variables in a 3-factor Vasicek model calibrated to USD yield data

with consistency hints. The `bubbles' show the 3� range within which the evolution should take place.

V. STATISTICAL INTERPRETATION

In this section, we put calibration in a statistical framework. This will provide a more

principled way of making certain choices that would otherwise be made in a heuristic

way. In particular,
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Figure 7: Time evolution of the state variables in a 3-factor Vasicek model calibrated to USD yield data

without consistency hints. The `bubbles' show the 3� range within which the evolution should have

taken place, but did not.

1. It will provide a rationale for the relative weight between the �t error and the hint

errors in the objective function.

2. It will enable us to bring other consistency hints, as well as a prior condition, into

the picture.
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Figure 8: In spite of the sharp contrast between �gures 6 and 7, the instantaneous rates with or without

consistency hints are virtually identical. The profound di�erence between the underlying models cannot

be detected just by looking at these rates.

3. It will provide a methodology for standardizing the di�erent error measures, i.e.,

converting them to the same `units'.

Probabilistic Setting

The premise of calibration is that the Vasicek model would be valid if the parame-

ters (long-term p

L

, and short-term p

S

) were properly chosen. Validity of the model

means that the pdf for generating p

S

has the form speci�ed by the model, with

p

L

= k

n

; �

n

; �

n

; �

ij

determining the parameters of this pdf. The state variables x

n

[l];

n = 1; :::; N , l = 1; :::; L, which are the short-term parameters p

S

, are generated by

the pdf. We obtain a simpler version of the pdf if we represent p

S

by the initial state
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Figure 9: The daily root mean square error in �tting the USD yield data, with and without consistency

hints. With the hints constraining the �t, there is only a negligible increase in the �t error.

x[1] and the stochastic elements w[l]; l = 1; :::; L� 1. This pdf

7

is given by

q(p

S

) = q(x[1]; fw[l]g) =

1

q

(2�)

N

jSj

e

�(x[1]��)

T

S

�1

(x[1]��)=2

�

L�1

Y

l=1

1

q

(2�)

N

jQj

e

�w[l]

T

Q

�1

w[l]=2

where Q, S, and � are de�ned as in section III.

Ideally, the correct values of the parameters would make every model function f

m

(p)

identical to the market value

~

f

m

. In reality, however, the model will not perfectly match

the data. Therefore, we must allow for some `noise' that separates f

m

(p) from

~

f

m

. We

will view the data f

~

f

m

g as well as the parameters p

L

and p

S

as random variables.

Under this probabilistic scenario, some prior distribution generates p

L

, which in turn

specify the parameters of q, q generates p

S

, then p

L

and p

S

determine f

m

(p), and

f

m

(p) specify the parameters for generating

~

f

m

. The question becomes: Given the

7

We use q to denote the joint pdf, and also to denote its marginal components as in section III.
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data, what is the probability

8

that the parameter values are correct? Applying Bayes

rule, we get

P(p

L

;p

S

jf

~

f

m

g) =

P(f

~

f

m

gjp

L

;p

S

) P(p

L

;p

S

)

P(f

~

f

m

g)

/ P(f

~

f

m

gjp

L

;p

S

) P(p

L

;p

S

) (�xed data f

~

f

m

g)

= P(f

~

f

m

gjp

L

;p

S

) P(p

S

jp

L

) P(p

L

)

The most probable parameter values are the ones that maximize the product of these

three probabilities. If we work with �log(probability) instead of the probability itself,

we will be minimizing the sum

�

� log P(f

~

f

m

gjp

L

;p

S

)

�

+ (� log P(p

S

jp

L

)) + (� log P(p

L

))

The three terms have a direct interpretation as

�t error : � log P(f

~

f

m

gjp

L

;p

S

)

consistency error : � log P(p

S

jp

L

)

prior error : � log P(p

L

)

We will discuss these terms one at a time. The above sum provides the proper way of

combining them once they are computed.

Fit Error

Given p

L

, p

S

. the model is fully speci�ed. Therefore, we can calculate the functions

f

m

(p) corresponding to the market data

~

f

m

. The �t probability P(f

~

f

m

gjp

L

;p

S

) would

then penalize the `noise' that separates

~

f

m

from the ideal f

m

(p). For example, if we

assume that the noise is an additive zero-mean i.i.d. Gaussian, the �t error will be

proportional to

M

X

m=1

�

f

m

(p)�

~

f

m

�

2

which is the expression for E

0

in section II. The constant of proportionality is inversely

related to the variance of the Gaussian. Thus, the relative weight between the �t error

and the hint errors can be derived from assumptions about the noise level.

Consistency Error

The long-term parameters p

L

a�ect the consistency error directly by modifying S, Q,

and � in the expression of q, and indirectly when we solve for the implied w[l] by

8

or the probability density.
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substituting the state variables into the di�erence equations. The consistency error

� log P(p

S

jp

L

) �xes p

L

in the expression of q, and evaluates � log(q(p

S

)). Substituting

the expression of q, this reduces to the initial-state error E

2

plus the cross entropy part

of E

1

. Therefore, even without imposing hints per se, the Bayesian equation almost

recreates the errors E

1

and E

2

of section III.

Hints come into play because of over�tting. In order to optimize the objective function,

we pursue many combinations of p

L

and p

S

, based on a �nite set of data. In doing so,

we may introduce anomalies in the solution that would be very rare if we considered

only one combination of the parameters. To avoid such anomalies, the search needs

to be regularized or constrained. Hints provide constraints based on the properties of

the model. As such, they do not exclude good solutions.

For instance, the entropy part of the hint error E

1

pulls w[l]; l = 1; :::; L � 1 away

from the solution w[l] = 0. This solution is the single most `probable' solution for

w[l], since q assumes its maximum value there. The solution is nonetheless undesirable,

since a typical solution for w[l] would have a variety of values that re
ect the Gaussian

distribution (the goodness of �t [10] seen in �gure 5, but not in �gure 4). If we generate

a single solution, it is likely to be of the typical variety. However, if we actively seek a

high-probability solution, we will get one, and it may be atypical. The contrast between

`probable' and `typical' comes up in many contexts, most notably in information theory

[4].

We will introduce other hint errors that also constrain the solution in a meaningful

way. In deriving E

1

, we made certain assumptions that we can exploit now to create

the new hints. For instance, the Kullback-Leibler distance K(pjjq) should have been

based on the full joint q, a situation we avoided because it would have rendered the

entire p

L

, p

S

a one-point sample, with no hope of creating a meaningful estimate.

Working with the marginal q solved this problem, but left certain properties of the

joint q untested. One such property is that w

l

should be statistically independent

for di�erent l. We will create a correlation error function that penalizes statistical

dependence. Also, the entropy part of E

1

was based on a Gaussian assumption about

p, and we will create hint errors that penalize violations of this assumption. Finally,

the entropy estimate was not sensitive to the mean of the distribution p, and we will

create a bias error that penalizes p if it has a non-zero mean. Here are the details.

Bias: The form of q asserts that w[l]; l = 1; :::; L� 1, have zero mean. If so, b

T

w[l]
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must also have zero mean for any constant b. Let

9

� =

1

L� 1

L�1

X

l=1

w[l]

� =

1

L� 1

L�1

X

l=1

(w[l]� �)(w[l]� �)

T

Based on � and �, we can de�ne the bias error function

E

3

= max

b

b

T

�

p

b

T

�b

which measures the normalized bias of w

l

along the worst-case projection. The ex-

pression can be reduced to

E

3

=

q

�

T

�

�1

�

which is a simple function of the implied w[l].

Correlation: q asserts that w[l] is uncorrelated with w[l + 1], among other things. If

so, b

T

w[l] must also be uncorrelated with b

T

w[l+ 1] for any constant b. Let

C =

1

L� 2

L�2

X

l=1

(w[l]� �)(w[l+ 1]� �)

T

Based on C and �, we can de�ne the correlation error function

E

4

= max

b

�

�

�

�

�

b

T

Cb

b

T

�b

�

�

�

�

�

which measures the normalized covariance, again along the worst-case projection. The

expression can be reduced to the maximum absolute eigenvalue of (A+A

T

)=2, where

A = D

�

1

2

U

T

CUD

�

1

2

with D and U being the eigenvalue matrix and eigenvector matrix of � (U

T

U = I and

U

T

�U = D).

Gaussianity: q asserts that w[l] are normally distributed. If so, the higher order

moments around the mean should be related to the variance accordingly. For instance,

the third moment that measures skewness should be zero, and the fourth moment that

measures kurtosis

10

should be three times the square of the variance

4

. One can de�ne

error functions E

5

and E

6

based on deviations from these values.

9

For an unbiased version of �, a normalizing factor of 1=(L� 2) instead of 1=(L� 1) would be used.

10

Kurtosis quanti�es `fatness of the tail', which is among the more vulnerable aspects of the Gaussian

assumption in models like the Vasicek.
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Together with E

1

and E

2

, the new error measures E

3

, E

4

, E

5

, and E

6

capture many

aspects of the pdf q. The list is by no means exhaustive. It is inevitable for a �nite

sample realization of a pdf to have anomalies along some dimension. What we have

done here was to develop consistency hints that penalize a few obvious anomalies that

may arise with over�tting.

Prior Error

P(p

L

) assigns a prior probability to the long-term parameters p

L

= k

n

; �

n

; �

n

; �

ij

.

There are reasons for preferring one set of parameters over the other in the absence of

any data. Some of the reasons are

1. Hard constraints arising from the model assumptions such as k

n

> 0, �

n

� 0, and

[�

ij

] being positive de�nite.

2. Economic considerations such as plausible values for the equilibrium interest rate

P

N

n=1

�

n

.

3. Moving window calibration that allows long-term parameters to change slowly from

one window to the next. In this case, the solution for p

L

in the old window becomes

the center of a concentrated prior distribution for the new window.

Canonical Errors

The consistency error functions that we derived have di�erent scales. Some are based

on pdf's, others on measures such as entropy, and others on various heuristics. Even

the premise of an error function can vary. For instance, the bias error could have been

based on a �xed projection instead of the worst-case projection. Therefore, the values

of these error functions, in the absolute, do not mean much. In order to combine the

errors in a meaningful way, we would like to convert them to a uniform scale. This

can be done using probability as a common ground.

Let E(p) be an error function. We only require that E(p) be truly an error function,

i.e., one for which larger values of E correspond to worse values of p. If p is stochastic,

E becomes a random variable. In this case, we de�ne the canonical version E of E as

follows

E(p) = � log (Pr(E � E(p)))

In other words, the value of E for a given p is based on the total probability of all sets

of parameters for which the value of E is no better than E(p). One can view this as

a natural grouping of the parameters induced by E.

The de�nition implies that E(p) is actually E(E(p)). In some cases, it is possible

to �nd an analytic formula for E(E). In other cases, E(E) can be evaluated based
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Figure 10: Generating the canonical error version of E

1

for the 3-factor Vasicek. (a) A Monte Carlo

simulation uses the model to generate a histogram of the values of E

1

. (b) The histogram is used to

infer the probability that E

1

exceeds a certain level, and an analytic formula is �t to that probability.

(c) Taking � log of the formula, we get the value of the canonical error for any value of E

1

.

on numerical integration. If all else fails, it is possible to estimate E(E) using Monte

Carlo simulations. To do this, generate the long-term parameters p

L

according to the
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prior (or �x them at a typical value), and generate p

S

according to q, then compute

E and histogram it. E(E) can now be estimated from the histogram through curve

�tting. The accuracy of the �t is more important for smaller values of E since the real

tradeo� between di�erent errors does not take place until they are relatively small.

Fortunately, that's where more points fall in the histogram, allowing for a better �t.

In general, E will be di�erent for di�erent N (number of Vasicek factors), and will

also vary with the calibration window size, sometimes in a predictable way. Figure 10

illustrates the Monte Carlo procedure for the consistency error function E

1

. We use

the number of factors and the calibration window size of the JPY swaps experiment.

Regardless of the range of values for E, the canonical E will be greater than or equal

to zero, with equality when E achieves its minimum possible value. The value of E

has a uniform interpretation. For instance, E = 1 always corresponds to a probability

of e

�1

or � 0:37%.

If we have a number of statistically independent errors, their E's can be combined

by simple addition. Even with errors that are not quite statistically independent, our

experience is that adding the canonical errors still works in practice.

11

This allows

us to mix all types of error measures in the same objective function.

CONCLUSION

Calibration of �nancial models must conform to the assumptions of these models. If

calibration is based only on �tting the data, it is liable to violate these assumptions. To

guarantee that this does not happen, consistency hints are introduced as constraints on

the calibration process. The Kullback-Leibler distance quanti�es the main constraint.

To balance the hint error functions, canonical errors are introduced. Consistency hints

can be implemented with an e�cient optimization algorithm. They are successfully

applied to calibrating the correlated multi-factor Vasicek model of interest rates in the

JPY swaps market and the USD yield market.
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11

Alternatively, one could de�ne a joint version of E when the errors are not statistically independent.

The Monte Carlo estimate in this case requires far more simulations.
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APPENDIX

In this appendix, we provide the de�nitions and derivations of the correlated multi-

factor Vasicek model. The reader may wish to get a more detailed account of interest-

rate models [14], stochastic di�erential equations (SDE's) [15], and Ito calculus [13].

The Vasicek N -factor model for interest rates is given by the following set of SDE's.

dx

n

= k

n

(�

n

� x

n

)dt+ �

n

dW

n

n = 1; :::; N

where k

n

> 0, �

n

� 0, and �

n

are constants, and W

n

(t) are Wiener processes whose

covariances are given by

E(dW

i

dW

j

) = �

ij

dt where �

ii

= 1 i; j = 1; :::; N

The instantaneous interest rate r is given by

r(t) =

N

X

n=1

x

n

(t)

The Discount Function

The discount function D(t; t + T ) computes the value, at the present time t, of

`a future dollar' at time t+ T ,

D(t; t+ T ) = E(e

�

R

t+T

t

r(�)d�

);

which can also be interpreted as the price of a unit bond of maturity T . The following

expression solves for D(t; t+ T ) under the Vasicek model.

D(t; t+ T ) =

N

Y

i=1

exp

 

�

x

i

(t)

k

i

(1� e

�k

i

T

)� �

i

(T +

e

�k

i

T

� 1

k

i

)

+

N

X

j=1

 

�

i

�

j

�

ij

2k

i

k

j

 

(1� e

�T (k

i

+k

j

)

)

k

i

+ k

j

�

(1� e

�Tk

i

)

k

i

�

(1� e

�Tk

j

)

k

j

+ T

!!

1

A

To prove this, we use the fact that r(�) =

P

N

n=1

x

n

(�), and integrate the SDE's to

obtain

r(�) =

N

X

n=1

�

x

n

(t)e

�k

n

(��t)

+ �

n

(1� e

�k

n

(��t)

) + �

n

e

�k

n

�

Z

�

t

e

k

n

s

dW

n

(s)

�
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for � � t. Therefore

Z

t+T

t

r(�)d� =

N

X

n=1

 

x

n

(t)

k

n

(1� e

�k

n

T

) + �

n
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e
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n
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� 1
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�

�

n

k

n

Z

t+T

t

(e
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n

(s�t�T )

� 1)dW

n

(s)

!

where the last term resulted from integration by parts. Let us call this last term �

� =

N

X

n=1

�

n

k

n

Z

t+T

t

(e

k

n

(s�t�T )

� 1)dW

n

(s)

� is a zero-mean Gaussian with variance

var(�) =

N

X

i=1

N

X

j=1

�
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�

j

�

ij
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i

k

j

Z
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(e

k

i

(s�t�T )

� 1)(e
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� 1)ds

since E(dW

i

(s)dW

j

(s)) = �

ij

ds, and E(dW

i

(s

1

)dW

j

(s

2

)) = 0 for s

1

6= s

2

by the proper-

ties of the Wiener processes. In terms of �, since D(t; t+T ) = E(exp(�

R

t+T

t

r(�)d�)),

we can write

D(t; t+ T ) =

 

N

Y

n=1

exp
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for a zero-mean Gaussian �

4

. Substituting,

D(t; t+ T ) =

N
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exp
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Carrying out the integration results in the required expression.

Other Market Functions

Many model-based market functions follow from the discount function. For example,

the yield function Y (t; t + T ) estimates the interest rate between times t and t + T ,

expected at time t.

Y (t; t+ T ) =

� logD(t; t+ T )

T

The forward rate function F (t; t+ T ) is the instantaneous rate at time t+ T expected

at time t

F (t; t+ T ) =

�@

@T

logD(t; t+ T )
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The swap par rate is the �xed interest rate that can be evenly exchanged for a 
oating

rate. It assumes that we are receiving at times t + �t, t + 2�t, ... , t + T the

return on one dollar invested �t earlier at the prevailing interest rate at the time of

investment. In return, we must pay out at the same times t+�t, t+ 2�t, ... , t+ T

constant payments of R�t each, which can be thought of as simple interest on one

dollar invested �t earlier at rate R. The par rate is the value of R that would make

these two cash 
ows equitable. It is denoted by R(t; t+ T;�t), and is given by

R(t; t+ T;�t) =

1�D(t; t+ T )

�t

P

T=�t

i=1

D(t; t+ i�t)

For all of these functions, we can obtain a Vasicek formula by substituting the formula

for D(t; t+ T ). For instance,

F (t; t+ T ) =

N

X

i=1

�

x

i

(t)e

�k

i
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� �

i

(1� e
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i
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N

X
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2k

i

k

j

(e

�Tk

i

� 1)(e

�Tk

j

� 1)

!

The only state variables appearing in these formulas are the `current states', i.e., the N

state variables x

n

(t) at the present time t (the time when the quantities are measured).

This fact simpli�es the logistics of �tting market functions to market data.

The �nal market function used in this paper is the volatility term structure (VTS) of

the forward rate. Given the Vasicek formula for F (t; t+ T ), if we hold T constant, we

can write

dF =

N

X

n=1

e

�k

n

T

dx

n

Substituting from the Vasicek SDE's, the stochastic part of dF is given by

P

N

n=1

e

�k

n

T

�

n

dW

n

. Therefore, the variance of dF is given by

var(dF ) =

N

X

i=1

N

X

j=1

e

�(k

i

+k

j

)T

�

ij

�

i

�

j

dt

The VTS is de�ned by V (t; t+ T ) =

q

var(dF )=dt. Therefore,

V (t; t+ T ) =

v

u

u

u

t

N

X

i=1

N

X

j=1

e

�(k

i

+k

j

)T

�

ij

�

i

�

j

which is constant w.r.t. t and does not depend on state variables. In �gure 2, the

theoretical VTS was computed by this formula, while the historical VTS was based

on the sample standard deviation of changes in F (t; t+ T ) from day to day.
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Discrete-time Approximation

To derive a discrete-time version of the Vasicek model, we consider one step in time

from t to t+�t, and integrate the SDE's to get

x

n

(t+�t) = x

n

(t)e

�k

n

�t

+ �

n

(1� e

�k

n

�t

) + �

n

e
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n

(t+�t)

Z
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t

e

k

n

s

dW

n

(s)

Rewriting x

n

(t+�t)� x

n

(t) as �x

n

and rearranging, we get

�x

n

= x

n

(t)(e
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n
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which can be rewritten as
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� x

n

(t))�t+ �

n

w

n

(t)

p
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The last term follows from the properties of Wiener processes, with w

n

(t) being jointly

Gaussian with zero mean and a covariance given by

E(w

i

(t)w

j

(t)) =

 

1� e

�(k
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+k

j

)�t

(k

i

+ k

j

)�t

!
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ij

i; j = 1; :::; N

Furthermore, w

n

(t) are independent for di�erent times with non-overlapping �t. This

expression for �x

n

is the exact di�erence equation for the Vasicek model. If k

n

�t <<

1, we can approximate it by a di�erence equation similar to the SDE.

�x

n

= k

n

(�

n

� x

n

)�t+ �

n

w

n

p

�t

where x

n

= x

n

(t), w

n

= w

n

(t), and E(w

i

w

j

) = �

ij

. When discrete time is used, we

adopt the usual notation of bracketed index arguments. Thus, time will be denoted

by t[l], and the corresponding x

n

and w

n

will be x

n

[l] and w

n

[l].
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