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The systematic use of hints in the learning-from-examples paradigm is the

subject of this review. Hints are the properties of the target function that

are known to us independently of the training examples. The use of hints

is tantamount to combining rules and data in learning, and is compati-

ble with di�erent learning models, descent techniques, and regularization

techniques. All the hints are represented to the learning process by virtual

examples, and the training examples of the target function are treated on

equal footing with the rest of the hints. A balance is achieved between the

information provided by the di�erent hints through the choice of objective

functions and learning schedules. The Adaptive Minimization algorithm

achieves this balance by relating the performance of the hints to the over-

all test error. On the theoretical side, the information value of hints is

contrasted to the complexity value and related to the VC dimension. The

application of hints in the forecasting of the very noisy foreign-exchange

markets is illustrated.

1. INTRODUCTION

The context of this paper is learning from examples, where the learning process

tries to recreate a target function using a set of input-output examples. Hints are the
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auxiliary information about the target function that can be used to guide the learning

process [2]. The operative word here is auxiliary. There is quite a bit of information

already contained in the input-output examples. There is also information re
ected in

the selection of the learning model (e.g., a neural network of a particular structure).

If, in addition, we know some properties that further delimit the target function, we

have hints. This paper reviews the theory, algorithms, and applications of how hints

can be systematically incorporated in the learning process.

Hints can make a real di�erence in some applications. A case in point is �nancial

forecasting [5]. Financial data is both nonstationary and extremely noisy. This limits

the amount of relevant data that can be used for training, and limits the information

content of such data. However, there are many hints about the behavior of �nancial

markets that can be used to help the learning process. A hint as simple as symmetry

of the foreign-exchange (FX) markets results in a statistically signi�cant di�erential in

performance as shown in �gure 1. The plots show the averaged cumulative returns for

the four major FX currencies over a sliding one-year test window, with and without

the symmetry hint.
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Figure 1: The impact of the symmetry hint on Foreign-Exchange rate forecasting

Just by analyzing the FX training data, one cannot deduce that the symmetry

hint is valid. The hint is thus an auxiliary piece of information, telling the learning
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process something new. This is a double-edged sword because, by the same token,

one cannot verify that the symmetry hint is valid just by analyzing the training data.

A false hint, such as antisymmetry, can be asserted and used in the learning process

equally easily. It is the performance after the hint is used that ultimately validates

the hint. In the case of antisymmetry of the FX markets, �gure 2 establishes that it is

indeed a false hint. It may be possible, however, to partially detect or validate a hint

using the training data. In those cases, the `auxiliary' information of the hint is only

incremental.
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Figure 2: Comparison of the performance of the true hint versus a false hint

This brings us to a key point. The performance of learning from hints will only

be as good as the hints we use. Valid hints that provide signi�cant new information

usually come from special expertise in the application domain, and from common-

sense rules. The techniques we are reviewing here are not meant to generate hints in

a given application. They only prescribe how to integrate the hints in the learning-

from-examples paradigm once they are identi�ed. There are `information recycling'

methods that are tantamount to the automated generation of hints from the training

data, and these are not reviewed here.

The main purpose of using hints is to improve the generalization (out-of-sample)

performance. As a constraint on the set of allowable solutions the learning process may
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settle in, the hint tends to worsen the training (in-sample) performance by excluding

some solutions that might �t the training data better. This is obviously not a problem

because, as the hint is a valid property of the target function, the excluded solutions

disagree with the target function and correspond to `�tting the noise' (over�tting

the training data). In contrast with regularization techniques [6,24,33], which also

constrain the allowable solutions to prevent over�tting, it is the information content

of the hint that improves the out-of-sample performance. Figure 3 illustrates the

di�erence. When the symmetry hint in FX is replaced by a hint which is uninformative

but equally constraining (`noise' hint), the bene�t of the hint is diminished.
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Figure 3: Comparison of the performance of the true hint versus a noise hint

Hints have other incidental e�ects on learning. Regularization is one of them. Even

if the hint is not valid, its constraining role may improve generalization. Comparing the

performance of the noise hint in �gure 3 to that of no hint in �gure 1, the regularization

e�ect in this particular application is negligible. Another side e�ect of hints is a

computational one. We observed in our experiments that the descent algorithm often

had easier time �nding a good minimum of the training error when we used hints.

A more deliberate use of this e�ect is reported in [30], where a catalyst hint was

used for the express purpose of avoiding local minima. Thus the hint was needed for

its complexity value rather than its information value (see section 2). Out-of-sample
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performance was not at issue in this application since an unlimited supply of training

examples from target function was readily available.

The applications that bene�t the most from hints are those in which the training

examples are limited (costly, or outright limited in number), and those in which the

information in the training examples is limited (noisy examples, or examples that do

not depict some aspects of the target function). Like regularization, hints would not be

needed if an unlimited supply of proper examples (and unlimited computation) could

be secured.

There are di�erent types of hints that are common to many applications. Invari-

ance hints [12,16,19,23] are the most common type in pattern recognition applications.

Such a hint asserts that the target function is invariant under certain transformations

of the input. Monotonicity hints [4] are common in `expert system' applications such

as credit rating and medical diagnosis.

The two major steps for using hints in learning from examples are the represen-

tation of hints by virtual examples and the incorporation of hints in the objective

function. A virtual example is for the hint what a training example is for the target

function. It is a sample of the information provided by the hint. Figure 4 shows a

virtual example of the invariance hint for handwritten characters under a composite

transformation of elastic deformation [17], scaling, shift, and rotation. The example

takes the form of a pair of inputs that are transformed versions of each other. A virtual

example does not provide the value of the target function (the identity of the character

� in this case). It only asserts that the identity is the same for both versions of the

character.

Figure 4: Virtual Example of an Invariance Hint

ξ ξ
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After the hint is represented by virtual examples, we can measure how well it

has been learned by gauging how well the system is performing on a batch of these

examples. This error measure is the way the performance of the hint is expressed to

the objective function. The choice of an objective function is the second step in our

method. Without hints, the objective function is usually just the error on the training

examples. With the hints, we not only want to minimize the error on the training

examples, but also the error on the di�erent hints. The simultaneous minimization

of errors gives rise to the issue of balance. What is the scalar objective function that

gives each of these error measures its due weight? This weight determines how often

each hint is scheduled in the learning process. In section 4, we will discuss Adaptive

Minimization that decides these weights by relating the di�erent error measures to the

overall test error.

Not all applications have obvious hints to spare. One practical way of extracting

subtle hints from the experts in a given application (e.g., traders in a �nancial market)

is to create a system without using hints, and, when the experts disagree with its

output, ask them to articulate why they disagree. The hints created this way are

inherently auxiliary since they were not exhibited in the system output. Another

practical issue is that it is often tricky to ascertain whether a hint is strictly valid,

or just `approximately' valid. Some of the more useful hints are soft hints which hold

most of the time, but not all the time. The use of error measures to represent di�erent

hints allows us to incorporate soft hints in the same paradigm by not requiring their

error to go all the way to zero.

The idea of using auxiliary information about the target function to help the

learning process is clearly a basic one, and has been used in the literature under

di�erent names (hints, side information, heuristics, prior knowledge, explicit rules, to

name a few). In many instances, the information is used on a case-by-case basis to

guide the selection of a suitable learning model. In this paper, we are only reviewing

the systematic methods for using hints as part of the regular learning paradigms. Such

methods are particularly important because hints are heterogeneous in nature, and do

not lend themselves to a standard implementation in most cases.

The outline of the paper is as follows. We start by discussing the theoretical

background in section 2. The information value and the complexity value of hints are

de�ned. The VC dimension is used to quantify the information value, and a numerical

example is given. Section 3 discusses the representation of hints using virtual examples,

and the resulting error measures. The representation is carried out for common types
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of hints. Section 4 addresses the objective functions and the learning schedules in

terms of the error measures on di�erent hints. Adaptive Minimization is discussed

and simple estimates of its objective function are included. Finally, the application of

hints to the FX markets is detailed in section 5.

2. THEORETICAL ISSUES

In this section, we discuss the theoretical aspects of learning from hints. We

contrast the information value with the complexity value of hints, and quantify the

information value in terms of the VC dimension. We �rst introduce the de�nitions

and notation.

2.1) Basic Setup:

We use the usual setup for learning from examples. The environment X is the

set on which the target function f is de�ned. The points in the environment are

distributed according to some probability distribution P . f takes on values from some

set Y

f : X ! Y

Often, Y is just f0; 1g or the interval [0; 1]. The learning process takes input-output

examples of (the otherwise unknown) f as input and produces a hypothesis g

g : X ! Y

that attempts to approximate f .

The degree to which a hypothesis g is considered an approximation of f is measured

by a distance or `error'

E(g; f)

The error E is based on the disagreement between g and f as seen through the eyes

of the probability distribution P . Two common forms of the error measure are

E = Pr[g(x) 6= f(x)]

and

E = E [(g(x)� f(x))

2

]

where Pr[:] denotes the probability of an event, and E [:] denotes the expected value of

a random variable. The underlying probability distribution is P . E will always be a
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non-negative quantity, and we will take E(g; f) = 0 to mean that g and f are identical

for all intents and purposes.

If the learning model is a parameterized set of hypotheses with real-valued pa-

rameters (e.g., an analog neural network), we will assume that E is well-behaved as a

function of the parameters when we use derivative-based descent techniques. We make

the same assumption about the error measures that will be introduced for the hints.

The training examples are generated from the target function f by picking a num-

ber of points x

1

; � � � ; x

N

from X (usually independently according to the probability

distribution P ). The values of f on these points are given (noiseless case). Thus, the

input to the learning process is the set of examples

(x

1

; f(x

1

)) ; � � � ; (x

N

; f(x

N

))

and these examples are used to guide the search for a good hypothesis. We will consider

the set of examples of f as only one of the available `hints' and denote it by H

0

. The

other hints H

1

; � � � ; H

M

will denote additional properties of f that are known to us.

The training error on the examples of f will be denoted by E

0

, while the error measures

on the di�erent hints will be denoted by E

1

; � � � ; E

M

.

2.2) Information versus Complexity:

Since the goal of hints is to help learning from examples, they address the problems

that the learning process may have. There are two such problems in learning from

examples:

1. Do the examples convey enough information to replicate the target function?

2. Is there a speedy way of replicating the function using the examples?

These questions contrast the roles of information and complexity in learning [1]. The

information question is manifested in the generalization error while the complexity

question is manifested in the computation time. While the two questions share some

ground, they are conceptually and technically di�erent. Without su�cient informa-

tion, no algorithm slow or fast can produce a good hypothesis. However, su�cient

information is of little use if the computational task of producing a good hypothesis is

intractable [20].

A hint may be valuable to the learning process in two ways [2]. It may reduce the

number of hypotheses that are candidates to replicate f (information value), and it

may reduce the amount of computation needed to �nd the right hypothesis (complexity
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value). The contrast between the information value and the complexity value of a hint

is illustrated in the following example.

A target function f is being learned by a neural network with K weights, labeled

w

1

; w

2

; � � � ; w

K

for simplicity. Which of the following two hints is more valuable to the

learning process? (Both hints are arti�cial, and are meant only for illustration)

1. f can be implemented using the network with w

1

set to zero.

2. f can be implemented using the network with w

1

; � � � ; w

K

constrained by the two

conditions

P

K

k=1

w

k

= 0 and

P

K

k=1

w

3

k

= 0.

If we look at the information value, the second hint is more valuable because it re-

duces the K `degrees of freedom' of the network by 2, while the �rst hint reduces

them only by 1. The situation is reversed when it comes to complexity value. The

second hint is worse than no hint at all, since it adds two constraints to the otherwise

unconstrained optimization problem. In contrast, the �rst hint has a positive e�ect,

since the algorithm can �x w

1

= 0, hence deal with a smaller computational problem

(K � 1 parameters instead of K parameters).

Most hints are used for their information value. However, the catalyst hint was

used in [30] for its complexity value to help a network learn the concept of medium

height. The hint itself was the concept of tallness, a monotonic version of the other

concept. As a result of using the hint, the network had easier time converging to the

solution without getting stuck in local minima. There was an unlimited supply of

training examples in this case, so information was not an issue.

2.3) New VC Dimensions:

The VC dimension [9,31] is an established tool for analyzing the question of infor-

mation in learning from examples. Simply stated, the VC dimension V C(G) furnishes

an upper bound on the number of examples needed by the learning process that starts

with a learning model G, where G is formally a set of hypotheses about what f may

be. The examples guide the search for a hypothesis g 2 G that is a good replica of f .

Since f is unknown to begin with, we start with a relatively big set of hypotheses G

to maximize our chances of �nding a good approximation of f among them. However,

the bigger G is, the more examples of f we need to pinpoint a good hypothesis. This

is re
ected in a bigger value of V C(G).

When a hint is introduced, the VC dimension is a�ected. Since the hint is a valid

property of f , we can use it as a litmus test to weed out bad g's thus shrinking G
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without losing good hypotheses. This leads to two new VC dimensions [3]:

1. The VC dimension provides an estimate for the number of examples needed to

learn f , and since a hint H reduces the number of examples needed, a smaller `VC

dimension given the hint', V C(GjH), emerges.

2. If H itself is represented to the learning process by virtual examples, we can ask

how many examples are needed to learn the hint. This leads to a generalization of the

VC dimension to cover examples of the hint as well as examples of the function. A

new VC dimension for the hint, V C(G;H), emerges.

We start with a brief explanation of how the original VC dimension is de�ned. We

have the same setup for learning from examples: The environment X and the target

function f : X ! f0; 1g (restricted to binary values here). The goal is to produce a

hypothesis g : X ! f0; 1g (also restricted to binary values) that approximates f . To do

this, the learning process uses a set of training examples (x

1

; f(x

1

)) ; : : : ; (x

N

; f(x

N

))

of f . We use the probability distribution P on the environment X to generate the

examples. Each example (x; f(x)) is picked independently according to P (x). The

hypothesis g that results from the learning process is considered a good approximation

of f if the probability (w.r.t. P (x)) that g(x) 6= f(x) is small. The learning process

should have a high probability of producing a good approximation of f when a su�cient

number of examples is provided. The VC dimension helps determine what is `su�cient'.

Here is how it works. Let �

g

= Pr[g(x) = f(x)] be the probability of agreement

between g and f (= 1 � E(g; f)). We wish to pick a hypothesis g that has �

g

� 1.

However, f is unknown and thus we don't know the values of these probabilities. Since

f is represented by examples, we can compute the frequency of agreement between

each g and f on the examples and base our choice of g on the frequencies instead of the

actual probabilities. Let hypothesis g agree with f on a fraction �

g

of the examples.

We pick a hypothesis that has �

g

� 1. The VC inequality asserts that the values of

�

g

's will be close to �

g

's. Speci�cally,

Pr

"

sup

g2G

j�

g

� �

g

j > �

#

� 4m(2N)e

��

2

N=8

;

where `sup' denotes the supremum, and m is the growth function of G. m(N) is the

maximum number of di�erent binary vectors g(x

1

) � � � g(x

N

) that can be generated by

varying g over G while keeping x

1

; � � � ; x

N

2 X �xed. Clearly, m(N) � 2

N

for all N .

The VC dimension V C(G) is de�ned as the smallest N for which m(N) < 2

N

. When
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G has a �nite VC dimension, V C(G) = d, the growth function m(N) can be bounded

by

m(N) <

d

X

i=0

 

N

i

!

� N

d

+ 1

This estimate can be substituted in the VC inequality, and the RHS of the inequality

becomes arbitrarily small for su�ciently large N . This means that it is almost certain

that each �

g

will be approximately the same as the corresponding �

g

. This is the

rationale for considering N examples su�cient to learn f . We can a�ord to base our

choice of hypothesis on �

g

as calculated from the examples, because it is approximately

the same as �

g

. How large N needs to be to achieve a certain degree of approximation

is a�ected by the value of the VC dimension.

The same ideas can be used in deriving the new VC dimensions V C(GjH) and

V C(G;H) when the hint H is introduced. For instance, let H be an invariance hint

formalized by the partition

X =

[

�

X

�

of the environment X into the invariance classes X

�

, where � is an index. Within

each class X

�

, the value of f is constant. In other words, x; x

0

2 X

�

implies that

f(x) = f(x

0

).

Some invariance hints are `strong' and others are `weak', and this is re
ected in

the partition X =

S

�

X

�

. The �ner the partition, the weaker the hint. For instance,

if each X

�

contains a single point, the hint is extremely weak (actually useless) since

the information that x; x

0

2 X

�

implies that f(x) = f(x

0

) tells us nothing new as x

and x

0

are the same point in this case. On the other extreme, if there is a single X

�

that contains all the points (X

�

= X), the hint is extremely strong as it forces f to

be constant over X (either f = 1 or f = 0). Practical hints, such as scale invariance

and shift invariance, lie between these two extremes. The strength or weakness of the

hint is re
ected in the quantities V C(GjH) and V C(G;H).

V C(GjH) is de�ned as follows. If H is given by the partition X =

S

�

X

�

, each

hypothesis g 2 G either satis�es H or else does not satisfy it. Satisfying H means that

whenever x; x

0

2 X

�

, then g(x) = g(x

0

). The set of hypotheses that satisfy H is

^

G

^

G = fg 2 G j x; x

0

2 X

�

) g(x) = g(x

0

)g

^

G is a set of hypotheses and, as such, has a VC dimension of its own. This is the basis

for de�ning the VC dimension of G given H

V C(GjH) = V C(

^

G)
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Since

^

G � G, it follows that V C(GjH) � V C(G). Non-trivial hints lead to a signi�cant

reduction from G to

^

G, resulting in V C(GjH) < V C(G).

V C(GjH) replaces V C(G) after the hint is learned. Without the hint, V C(G)

provides an estimate for the number of examples needed to learn f . With the hint,

V C(GjH) provides a new estimate for the number of examples. This estimate is valid

regardless of the mechanism for learning the hint, as long as it is completely learned.

If, however, the hint is only partially learned (which means that some g's that do not

strictly satisfy the invariance are still allowed), the e�ective VC dimension lies between

V C(G) and V C(GjH).

The other VC dimension V C(G;H) arises when we represent the hint by virtual

examples. If we take the invariance hint speci�ed by X =

S

�

X

�

, a virtual example

would be `f(x) = f(x

0

)', where x and x

0

belong to the same invariance class. In other

words, the example is the pair (x; x

0

) that belong to the same X

�

.

Examples of the hint, like examples of the function, are generated according to a

probability distribution. One way to generate (x; x

0

) is to pick x from X according

to the probability distribution P (x), then pick x

0

from X

�

(the invariance class that

contains x) according to the conditional probability distribution P (x

0

jX

�

). A sequence

of N examples (x

1

; x

0

1

); (x

2

; x

0

2

); � � � ; (x

N

; x

0

N

) would be generated in the same way,

independently from pair to pair.

This leads to the de�nition of V C(G;H). The VC inequality is used to estimate

how well f is learned. We wish to use the same inequality to estimate how well H is

learned. To do this, we transform the situation from hints to functions. This calls for

de�nitions of new X, P, G, and f .

Let H be the invariance hint X =

S

�

X

�

. The new environment is de�ned by

X =

[

�

X

2

�

(pairs of points coming from the same invariance class) with the probability distribu-

tion described above

P(x; x

0

) = P (x)P (x

0

jX

�

)

where X

�

is the class that contains x (hence contains x

0

). The new set of hypotheses

G, de�ned on the environment X, contains a hypothesis g for every hypothesis g 2 G

such that

g(x; x

0

) =

(

1 g(x) = g(x

0

)

0 g(x) 6= g(x

0

)
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and the function to be `learned' is

f(x; x

0

) = 1

The VC dimension of the set of hypotheses G is the basis for de�ning a VC

dimension for the hint.

V C(G;H) = V C(G)

V C(G;H) depends on both G and H since G is based on G and the new environment

X (which in turn depends on H).

As in the case of the set G and its growth function m(N), the VC dimension

V C(G;H) = V C(G) is de�ned based on the growth function m(N) of the set G.

m(N) is the maximum number of di�erent binary vectors that can be obtained by

applying the g's to (�xed but arbitrary) N examples (x

1

; x

0

1

); (x

2

; x

0

2

); � � � ; (x

N

; x

0

N

).

V C(G;H) is the smallest N for which m(N) < 2

N

.

The value of V C(G;H) will di�er from hint to hint. Consider our two extreme

examples of weak and strong hints. The weak hint has V C(G;H) as small as 1 since

each g always agrees with each example of the hint (hence every g is the constant 1,

and m(N) = 1 for all N). The strong hint has V C(G;H) as large as it can be. How

large is that? In [14], it is shown that for any invariance hint H,

V C(G;H) < 5 V C(G)

The argument goes as follows. For each pattern generated by the g's on

x

1

; x

0

1

; x

2

; x

0

2

; � � � ; x

N

; x

0

N

there is at most one distinct pattern generated by the g's on

(x

1

; x

0

1

) ; (x

2

; x

0

2

) ; � � � ; (x

N

; x

0

N

)

because g(x

n

; x

0

n

) is uniquely determined by g(x

n

) and g(x

0

n

). Therefore,

m(N) � m(2N)

If V C(G) = d, we can use Cherno� bounds [13] to estimate m(2N) for N � d as

follows

m(2N) <

d

X

i=0

 

2N

i

!

� 2

H(

d

2N

)�2N
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where H(�) = �� log

2

�� (1� �) log

2

(1� �) is the binary entropy function. Therefore,

once H(

d

2N

) �

1

2

, m(N) will be less than 2

N

and N must have reached, or exceeded,

the VC dimension of G. This happens at N=d < 5.

In many cases, the smaller V C(GjH) is, the larger V C(G;H) will be, and vice

versa. Strong hints generally result in a small value of V C(GjH) and a large value of

V C(G;H), while weak hints result in the opposite situation. The similarity with the

average mutual information I(X;Y ) and the conditional entropy H(XjY ) in informa-

tion theory [11] is the reason for choosing this notation for the various VC dimensions.

2.4) Numerical Case:

To illustrate the numerical values of the new VC dimensions, we consider a simple

case in which a small neural network (�gure 5) learns a binary target function that is

both even-valued (H

1

) and invariant under cyclic shift (H

2

). The network has 8 inputs,

one hidden layer with 2 neurons, and one output neuron. The rule of thumb for the

VC dimension of neural networks is that it is approximately the same as the number of

real-valued parameters in the network (independent weights and thresholds). We will

therefore calculate this number for the network before and after it is constrained by the

di�erent hints to get an estimate for V C(G), V C(GjH

1

), V C(GjH

2

), V C(GjH

1

H

2

).

In each case, we consider the combination of weights and thresholds that maximizes

the number of free parameters.

w

w

w

w

t

t

11

82

1

2

1

2

t

81w

w12

Figure 5: An 8-2-1 Neural Network

Y. Abu-Mostafa 14 { Hints {



No Hints: The number of weights is 8 � 2 + 2 = 18 plus 3 thresholds. There are no

constraints, therefore

V C(G) � 21

Evenness: To implement a general even function, the two hidden units need to be

dual; w

11

= �w

12

, w

21

= �w

22

, � � �, w

81

= �w

82

, t

1

= t

2

, w

1

= w

2

. Therefore, the

number of free parameters is 8 + 1 + 1 + 1, hence

V C(GjH

1

) � 11

Cyclic Shift: To implement a general function which is invariant under cyclic shift

using the maximum number of free parameters, each hidden neuron must have constant

weights; w

11

= w

21

= � � � = w

81

and w

12

= w

22

= � � � = w

82

. Therefore, the number of

free parameters is 1 + 1 + 2 + 2 + 1, hence

V C(GjH

2

) � 7

Notice that V C(GjH

2

) < V C(GjH

1

) which is consistent with the intuition that cyclic

shift is a stronger hint than evenness. Notice also that, for the 8-2-1 network, the

constraint on the network would be the same if H

2

was invariance under permutation

of inputs or invariance under constant component sum of inputs. With a di�erent

network, these hints can result in di�erent values for V C(GjH).

Both Hints: To implement a general even function which is also invariant under cyclic

shift, we have the conjunction of the constraints on the two hidden neurons. Thus,

w

11

= w

21

= � � � = w

81

= �w

12

= �w

22

= � � � = �w

82

. Also, t

1

= t

2

and w

1

= w

2

.

Therefore, the number of free parameters is 1 + 1 + 1 + 1, hence

V C(GjH

1

H

2

) � 4

which is signi�cantly less than V C(G), the VC dimension without hints.

Figure 6 shows the experimental values of the corresponding generalization error in

all 4 cases. The training error, which is not shown, always goes to zero. The 4 curves

show the test error without hints, with H

1

, with H

2

, and with both hints, versus the

number of learning iterations. Since the number of training examples of f was the

same in all 4 cases, the �nal test error more or less agrees with the above numerical
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.
Figure 6: The test error with combinations of hints

estimates and the rule of thumb that the generalization error is proportional to the

VC dimension.

3. REPRESENTATION OF HINTS

In order to utilize hints in learning, we need to express them in a way that the

learning algorithm would understand. The main step is to represent each hint by

virtual examples. This enables the learning algorithm to process the hints in the same

way it processes the training examples of f . The virtual examples give rise to error

measures E

1

; E

2

; � � � ; E

M

that gauge the performance on the di�erent hints, the same

way E

0

gauges the performance on the training examples.

3.1) Virtual Examples:

Virtual examples were introduced in [2] as a means of representing a given hint,

independently of the target function and the other hints. Duplicate examples, on the

other hand, provide another way of representing certain types of hints by expanding

the existing set of training examples, and will be discussed in 3.3).

To generate virtual examples, we need to break the information of the hint into
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small pieces. For illustration, suppose that H

m

asserts that

f : [�1;+1]! [�1;+1]

is an odd function. A virtual example of H

m

would have the form

f(�x) = �f(x)

for a particular x 2 [�1;+1]. To generate N examples of this hint, we generate

x

1

; � � � ; x

N

and assert for each x

n

that f(�x

n

) = �f(x

n

). Suppose that we are in the

middle of a learning process, and that the current hypothesis is g when the example

f(�x) = �f(x) is presented. We wish to quantify how much g disagrees with this

example. This is done through an error measure e

m

. For the oddness hint, e

m

can be

de�ned as

e

m

= (g(x) + g(�x))

2

so that e

m

= 0 re
ects total agreement with the example (i.e., g(�x) = �g(x)). e

m

can be handled by descent techniques the same way the error on an example of f is

handled. For instance, the gradient of e

m

is given by

@e

m

@w

=

@

@w

(g(x) + g(�x))

2

= 2(g(x) + g(�x))

 

@g(x)

@w

+

@g(�x)

@w

!

which can be implemented using two iterations of backpropagation [29].

Once the disagreement between g and an example of H

m

has been quanti�ed

through e

m

, the disagreement between g and H

m

as a whole is automatically quanti�ed

through the error measure E

m

, where

E

m

= E(e

m

)

The expected value is taken w.r.t. the probability rule for picking the examples. This

rule is not unique. Neither is the form of the virtual examples nor the choice of the

error measure. Therefore, E

m

will depend on how we choose these components of the

representation. Our choice is guided by certain properties that we want E

m

to have.

Since E

m

is supposed to measure the disagreement between g and the hint, E

m

should

be zero when g is identical to f .

E = 0 ) E

m

= 0
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This is a necessary condition for E

m

to be consistent with the assertion that the hint

is valid for the target function f (recall that E is the error between g and f w.r.t.

the original probability distribution P on the environment X). The condition is not

necessary for soft hints, i.e., hints that are only `approximately' valid.

To see how this condition can make a di�erence, consider our example of the

odd function f , and assume that the set of hypotheses contains even functions only.

However, fortunately for us, the probability distribution P is uniform over x 2 [0; 1]

and is zero over x 2 [�1; 0). This means that f can be perfectly approximated using

an even hypothesis. Now, what would happen if we try to invoke the oddness hint? If

we generate x according to P and attempt to minimize E

m

= E [(g(x) + g(�x))

2

], we

will move towards the all-zero g (the only odd hypothesis), even if E(g; f) is large for

this hypothesis. This means that the hint, in spite of being valid, has taken us away

from the good hypothesis. The problem of course is that, for the good hypothesis, E

is zero while E

m

is not, which means that E

m

does not satisfy the above consistency

condition.

There are other properties that E

m

should have. Suppose we pick a representation

for the hint that results in E

m

being identically zero for all hypotheses. This is clearly

a poor representation in spite of the fact that it automatically satis�es the consistency

condition! The problem with this representation is that it is extremely weak (every

hypothesis `passes the E

m

= 0 test' even if it completely disagrees with the hint).

In general, E

m

should not be zero for hypotheses that disagree (through the eyes of

P ) with H

m

, otherwise the representation would be capturing a weaker version of the

hint. On the other hand, we expect E

m

to be zero for any g that does satisfy H

m

,

otherwise the representation would impose a stronger condition than the hint itself

since we already have E

m

= 0 when g = f .

On the practical side, there are other properties of virtual examples that are de-

sirable. The probability rule for picking the examples should be as closely related

to P as possible. The examples should be picked independently in order to have a

good estimate of E

m

by averaging the values of e

m

over the examples. Finally, the

computation e�ort involved in the descent of e

m

should not be excessive.

3.2) Types of Hints:

In what follows, we illustrate the representation of hints by virtual examples for

some common types of hints. Perhaps the most common type of hint is the invariance

hint. This hint asserts that f(x) = f(x

0

) for certain pairs x; x

0

. For instance, \f is
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shift-invariant" is formalized by the pairs x; x

0

that are shifted versions of each other.

To represent the invariance hint, an invariant pair (x; x

0

) is picked as a virtual example.

The error associated with this example is

e

m

= (g(x)� g(x

0

))

2

A plausible probability rule for generating (x; x

0

) is to pick x and x

0

according to the

original probability distribution P conditioned on x; x

0

being an invariant pair.

Another related type of hint is the monotonicity hint (or inequality hint). The

hint asserts for certain pairs x; x

0

that f(x) � f(x

0

). For instance, \f is monotonically

nondecreasing in x" is formalized by all pairs x; x

0

such that x � x

0

. To represent a

monotonicity hint, a virtual example (x; x

0

) is picked, and the error associated with

this example is

e

m

=

(

(g(x)� g(x

0

))

2

if g(x) > g(x

0

)

0 if g(x) � g(x

0

)

It is worth noting that the set of examples of f can be formally treated as a hint,

too. Given (x

1

; f(x

1

)); � � � ; (x

N

; f(x

N

)), the examples hint asserts that these are the

correct values of f at the particular points x

1

; � � � ; x

N

. Now, to generate an `example'

of this hint, we independently pick a number n from 1 to N and use the correspond-

ing (x

n

; f(x

n

)) (�gure 7). The error associated with this example is e

0

(we use the

convention that m = 0 for the examples hint)

e

0

= (g(x

n

)� f(x

n

))

2

Assuming that the probability rule for picking n is uniform over f1; � � � ; Ng,

E

0

= E(e

0

) =

1

N

N

X

n=1

(g(x

n

)� f(x

n

))

2

In this case, E

0

is also the best estimator of E = E [(g(x)� f(x))

2

] given x

1

; � � � ; x

N

that are independently picked according to the original probability distribution P .

This way of looking at the examples of f justi�es their treatment on equal footing

with the rest of the hints, and highlights the distinction between E and E

0

.

Another type of hint related to the examples hint is the approximation hint. The

hint asserts for certain points x 2 X that f(x) 2 [a

x

; b

x

]. In other words, the value of

f at x is known only approximately. The error associated with an example x of the

approximation hint is

e

m

=

8

>

<

>

:

(g(x)� a

x

)

2

if g(x) < a

x

(g(x)� b

x

)

2

if g(x) > b

x

0 if g(x) 2 [a

x

; b

x

]
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fPx

1

2

N

(x  , f(x  ))

(x  , f(x  ))

(x  , f(x  ))

Choose

at  random

(x  , f(x  ))n

at  random

Choose nx

n

1

2

N

Figure 7: Examples of the function as a hint

When a new type of hint is identi�ed in a given application, it should also be

expressed in terms of virtual examples. The resulting error measure E

m

will represent

the hint in the learning process.

3.3) Duplicate Examples:

Duplicate examples are perhaps the easiest way to use certain types of hints, most

notably invariance hints. If we start with a set of training examples from the target

function f

(x

1

; f(x

1

)) ; (x

2

; f(x

2

)) ; � � � ; (x

N

; f(x

N

))

and then assert that f is invariant under some transformation of x into x

0

, it follows

that we also know the value of f on x

0

1

; x

0

2

; � � � ; x

0

N

. In e�ect we have a duplicate set of

training examples

(x

0

1

; f(x

0

1

)) ; (x

0

2

; f(x

0

2

)) ; � � � ; (x

0

N

; f(x

0

N

))

where f(x

0

n

) = f(x

n

), that can be used along with the original set. For instance,

duplicate examples in the form of new 2D views of a 3D object are generated in [28]

based on existing prototypes.

When duplicate examples are used to represent a hint, the rest of the learning

machinery is already in place. The training error E

0

can still be used as the objective

function, with the training set now consisting of the original examples and the duplicate
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examples. The duplication process `inherits' the probability distribution that was

used to generate the original examples, which is usually the target distribution P . A

balance, of sorts, is automatically maintained between the hint and training examples

since both are learned through the same set of examples. The same software for

learning from examples can be used unaltered.

On the other hand, there are two main disadvantages of duplicate examples that

give an edge to virtual examples. The �rst one is the generalization error. The

duplicate examples are �xed in terms of the original training set. Even if the training

error goes to zero, this may not generalize to new examples. In e�ect, duplicate

examples represent a restricted version of the hint. Virtual examples, on the other

hand, are unlimited in number and hence do not have a generalization problem. The

other problem is the linkage between the training error and the hint error. For duplicate

examples, the two errors are entwined together in the new E

0

. For virtual examples,

E

0

and E

m

are separate entities and each can be emphasized or deemphasized at will

in the learning process. This `separation of concerns' enables us to design our objective

functions and learning schedules freely.

In a practical situation, we try to infer as many hints about f as the situation

will allow. Next, we represent each hint according to the guidelines discussed in this

section. This leads to error measures E

0

; E

1

; � � � ; E

M

for the hints that are ready for

incorporation in the objective function of a learning-from-examples algorithm.

4. OBJECTIVE FUNCTIONS

When hints are available in a learning situation, the objective function to be opti-

mized by the learning algorithm is no longer con�ned to E

0

(the error on the training

examples of f). This section addresses how to combine E

0

with the di�erent hints to

create a new objective function.

4.1) Adaptive Minimization:

If the learning algorithm had complete information about f , it would search for a

hypothesis g for which E(g; f) = 0. However, f being unknown means that the point

E = 0 cannot be directly identi�ed. The most any learning algorithm can do given

the hints H

0

; H

1

; � � � ; H

M

is to reach a hypothesis g for which all the error measures

E

0

; E

1

; � � � ; E

M

are zeros.

If that point is reached, regardless of how it is reached, the job is done. However, it
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is seldom the case that we can reach the zero-error point because either (1) it does not

exist (i.e., no hypothesis can satisfy all the hints simultaneously, which implies that no

hypothesis can replicate f exactly), or (2) it is di�cult to reach (i.e., the computing

resources do not allow us to exhaustively search the space of hypotheses looking for

this point). In either case, we will have to settle for a point where the E

m

's are `as

small as possible'.

How small should each E

m

be? A balance has to be struck, otherwise some E

m

's

may become very small at the expense of the others. This situation would mean that

some hints are over-learned while the others are under-learned. Knowing that we are

really trying to minimize E, and that the E

m

's are merely a vehicle to this end, the

criterion for balancing the E

m

's should be based on how small E is likely to be. This

is the idea behind Adaptive Minimization.

Given E

0

; E

1

; � � � ; E

M

, we form an estimate

^

E of the actual error E

^

E(E

0

; E

1

; E

2

; � � � ; E

M

)

and use it as the objective function to be minimized. This estimate of E becomes the

common thread that balances between the error on the di�erent hints. The formula

for

^

E expresses the impact of each E

m

on the ultimate performance. Such a formula

is of theoretical interest in its own right.

^

E is minimized by the learning algorithm. For instance, if backpropagation is used,

the gradient will be

@

^

E

@w

=

M

X

m=0

@

^

E

@E

m

@E

m

@w

which means that regular backpropagation can be used on each of the hints, with

@

^

E

@E

m

used as the `weight' for hint H

m

. Equivalently, a batch of examples from the di�erent

hints would be used with a number of examples from H

m

in proportion to

@

^

E

@E

m

. This

idea is discussed further when we talk about schedules in 4.3).

4.2) Simple Estimates:

In [10], a simple formula for

^

E(E

0

; � � � ; E

M

) is derived and tested for the case of

a binary target function f : R

n

! f0; 1g that has two invariance hints. The learning

model is a sigmoidal neural network, g : R

n

! [0; 1]. The di�erence between f and g

is viewed as a `noise' function n:

n(x) = jf(x)� g(x)j =

(

1� g(x); if f(x) = 1;

g(x); if f(x) = 0.
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Let � and �

2

be the mean and variance of n(x). In terms of � and �

2

, the error

measure E(g; f) is given by

E = E((f(x)� g(x))

2

) = E(n

2

(x)) = �

2

+ �

2

Similarly, the error on each of the two invariance hints is given by:

E

m

= E((g(x)� g(x

0

))

2

) = E((n(x)� n(x

0

))

2

) = 2�

2

assuming that n(x) and n(x

0

) are independent random variables. Given the training

examples, one can obtain a direct estimate of �

[�] =

1

N

0

N

0

X

i=1

jf(x

i

)� g(x

i

)j

and, combining this estimate with E

0

, E

1

, and E

2

, one can get an estimate of �

2

[�

2

] =

2(E

0

� [�]

2

) + E

1

+E

2

6

Finally, we get an estimate of E, based solely on the training examples of f and the

virtual examples of the hints, by combining [�] and [�

2

]

^

E = [�]

2

+ [�

2

]
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Figure 8: The error estimate in the case of overlearning
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Figures 8,9 illustrate the performance of this estimate in two cases, one where

overlearning occurs and the other where it doesn't. The �gures show the pass number

of regular backpropagation versus the training error (E

0

), test error (E), and the

estimate of the test error (

^

E). Notice that

^

E is closer to the actual E than E

0

is

(E

0

is the de facto estimate of E in the absence of hints).

^

E is roughly monotonic

in E and, as seen in �gure 8, exhibits the same increase due to overlearning that E

exhibits. The signi�cant di�erence between E and

^

E is in the form of (almost) a

constant. However, constants do not a�ect descent operations. Thus,

^

E provides a

better objective function than E

0

, even with the simplifying assumptions made.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
r
r
o
r

pass

Training set size = 40

Test error
Estimate of test error

Training error

Figure 9: The error estimate without overlearning

4.3) Schedules:

The question of objective functions can be posed as a scheduling question: If

we are simultaneously minimizing the interrelated quantities E

0

; � � � ; E

M

, how do we

schedule which quantity to minimize at which step? To start with, let us explore

how simultaneous minimization of a number of quantities is done. Perhaps the most

common method is that of penalty functions [35]. In order to minimize E

0

; E

1

; � � � ; E

M

,
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we minimize the penalty function

M

X

m=0

�

m

E

m

where each �

m

is a non-negative number that may be constant (exact penalty function)

or variable (sequential penalty function). Any descent method can be employed to

minimize the penalty function once the �

m

's are selected. The �

m

's are weights that

re
ects the relative emphasis or `importance' of the corresponding E

m

's. The choice

of the weights is usually crucial to the quality of the solution.

In the case of hints, even if the �

m

's are determined, we still do not have the

explicit values of the E

m

's (recall that E

m

is the expected value of the error e

m

on a

virtual example of the hint). Instead, we will estimate E

m

by drawing several examples

and averaging their error. Suppose that we draw N

m

examples of H

m

. The estimate

for E

m

would then be

1

N

m

N

m

X

n=1

e

(n)

m

where e

(n)

m

is the error on the n

th

example. Consider a batch of examples consisting

of N

0

examples of H

0

, N

1

examples of H

1

, � � � , and N

M

examples of H

M

. The total

error of this batch is

M

X

m=0

N

m

X

n=1

e

(n)

m

If we take N

m

/ �

m

, this total error will be a proportional estimate of the penalty

function

M

X

m=0

�

m

E

m

In e�ect, we translated the weights into a schedule, where di�erent hints are empha-

sized, not by magnifying their error, but by representing them with more examples.

We make a distinction between a �xed schedule, where the number of examples of

each hint in the batch is predetermined (albeit time-invariant or time-varying, deter-

ministic or stochastic), and an adaptive schedule where run-time determination of the

number of examples is allowed (how many examples of which hint go into the next

batch depends on how things have gone so far). For instance, constant �

m

's correspond

to a �xed schedule. Even if the �

m

's are variable but predetermined, we still get a

�xed (time-varying) schedule. When the �

m

's are variable and adaptive, the resulting

schedule is adaptive.

We can use uniform batches that consist of N examples of one hint at a time,

or, more generally, mixed batches where examples of di�erent hints are allowed within
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Figure 10: A �xed schedule for learning from hints

the same batch. For instance, as we discussed before, Adaptive Minimization can be

implemented using backpropagation on a mixed batch where hint H

m

is represented by

a number of examples proportional to

@

^

E

@E

m

. If we are using a linear descent method with

a small learning rate, a schedule that uses mixed batches is equivalent to a schedule that

alternates between uniform batches (with frequency equal to the frequency of examples

in the mixed batch). Figure 10 shows a �xed schedule that alternates between uniform

batches giving the examples of the function (E

0

) twice the emphasis of the other hints

(E

1

and E

2

). The schedule de�nes a turn for each hint to be learned. If we are using a

nonlinear descent method, it is generally more di�cult to ascertain a direct translation

from mixed batches to uniform batches.

The implementation of a given schedule (expressed in terms of uniform batches

for simplicity) goes as follows: (1) The algorithm decides which hint (which m for

m = 0; 1; � � � ;M) to work on next, according to some criterion; (2) The algorithm then

requests a batch of examples of this hint; (3) It performs its descent on this batch;

and (4) When it is done, it goes back to step (1). For �xed schedules, the criterion

for selecting the hint can be `evaluated' ahead of time, while for adaptive schedules,

the criterion depends on what happens as the algorithm runs. Here are some simple

schedules.
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Simple Rotation: This is the simplest possible schedule that tries to balance between

the hints. It is a �xed schedule that rotates between H

0

; H

1

; � � � ; H

M

. Thus, at step

k, a batch of N examples of H

m

is processed, where m = k mod (M + 1). This

simple-minded algorithm tends to do well in situations where the E

m

's are somewhat

similar.

Weighted Rotation: This is the next step in �xed schedules that tries to give di�erent

emphasis to di�erent E

m

's. The schedule rotates between the hints, visiting H

m

with

frequency �

m

. The choice of the �

m

's can achieve balance by emphasizing the hints

that are more important or harder to learn. The schedule of �gure 10 is a weighted

rotation with �

0

= 0:5 and �

1

= �

2

= 0:25.

Maximum Error: This is the simplest adaptive schedule that tries to achieve the same

type of balance as simple rotation. At each step k, the algorithm processes the hint

with the largest error E

m

. The algorithm uses estimates of the E

m

's to make its

selection.

Maximum Weighted Error: This is the adaptive counterpart to weighted rotation. It

selects the hint with the largest value of �

m

E

m

. The choice of the �

m

's can achieve

balance by making up for disparities between the numerical ranges of the E

m

's. Again,

the algorithm uses estimates of the E

m

's.

Adaptive schedules attempt to answer the question: Given a set of values for the

E

m

's, which hint is the most under-learned? The above schedules answer the question

by comparing the individual E

m

's. Adaptive Minimization answers the question by

relating the E

m

's to the actual error E. Here is the uniform-batch version of Adaptive

Minimization

Adaptive Minimization Schedule: Given E

0

; E

1

; � � � ; E

M

, make M + 1 estimates of E,

each based on all but one of the hints:

^

E(�; E

1

; E

2

; � � � ; E

M

)

^

E(E

0

; �; E

2

; � � � ; E

M

)

^

E(E

0

; E

1

; �; � � � ; E

M

)

� � �

^

E(E

0

; E

1

; E

2

; � � � ; �)

and choose the hint for which the corresponding estimate is the smallest.

The idea is that if the absence of E

m

resulted in the most optimistic view of E,
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then E

m

carries the worst news and, hence, requires immediate attention. One way of

expressing what the AM schedule does is that it automatically pays more attention to

hints that are more important (their impact on

^

E is large) or harder to learn (their

E

m

remains large, hence they are chosen again and again).

5. APPLICATION

In this section, we describe the details of the application of hints to forecasting

in the FX markets [5]. We start by discussing the very noisy nature of �nancial data

that makes this type of application particularly suited for the use of hints.

A �nancial market can be viewed as a system that takes in a lot of information

(fundamentals, news events, rumors, who bought what when, etc.) and produces

an output f (say up/down price movement for simplicity). A model, e.g., a neural

network, attempts to simulate the market (�gure 11), but it takes an input x which

is only a small subset of the information. The `other information' cannot be modeled

and plays the role of noise as far as x is concerned. The network cannot determine the

target output f based on x alone, so it approximates it with its output g. It is typical

that this approximation will be correct only slightly more than half the time.

Other  Information

Input Target  Ouput

MARKETx

NEURAL

NETWORK

ForecastInput

x

f

g

Figure 11: Illustration of the nature of noise in �nancial markets
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What makes us consider x `very noisy' is that g and f agree only

1

2

+ � of the

time (50% performance range). This is in contrast to the typical pattern recognition

application, such as optical character recognition, where g and f agree 1 � � of the

time (100% performance range). It is not the poor performance per se that poses a

problem in the 50% range, but rather the additional di�culty of learning in this range.

Here is why.

During learning, we use a limited set of N examples to train (and validate) a neural

network to forecast the market. In the 50% performance range, we want g to agree

with f on (

1

2

+ �)N examples. The number of hypotheses on N points that do that is

huge. Too many random hypotheses look like good candidates based on the limited set

of examples. This is in contrast to the 100% performance range where the hypotheses

need to agree with f on (1 � �)N examples. The number of hypotheses that do that

is limited. Therefore, one can have much more con�dence in a hypothesis that was

learned in the 100% range than one learned in the 50% range. It is not uncommon

to see a random trading policy making good money for a few months, but it is very

unlikely that a random character recognition system will read a paragraph correctly.

Of course this problem would diminish if we used a very large set of examples,

because the law of large numbers would make it less and less likely that g and f

can agree

1

2

+ � of the time just by `coincidence'. However, �nancial data has the

other problem of nonstationarity. Because of the continuous evolution in the markets,

old data may represent patterns of behavior that no longer hold. Thus, the relevant

data for training purposes is limited to fairly recent times. Put together, noise and

nonstationarity mean that the training data will not contain enough information for

the network to learn the function. More information is needed, and hints can be the

means of providing it.

Even simple hints can result in signi�cant improvement in the learning perfor-

mance. Figure 1 showed the learning performance for FX trading with and without

the symmetry hint. Figure 12 illustrates this hint as it applies to the U.S. Dollar versus

the German Mark. The hint asserts that if a pattern in the price history implies a

certain move in the market, then this implication holds whether you are looking at the

market from the U.S. Dollar viewpoint or the German Mark viewpoint. Formally, in

terms of normalized prices, the hint translates to invariance under inversion of these

prices. Notice that the hint says nothing about whether the market should go up

or down. It only requires that the prediction be consistent from both sides of this

symmetric market.
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U.S. GERMAN

?

DOLLAR MARK

Figure 12: Illustration of the symmetry hint in FX markets

Is the symmetry hint valid? The ultimate test for this is how the learning perfor-

mance is a�ected by the introduction of the hint. The formulation of hints is an art.

We use our experience, common sense, and analysis of the market to come up with a

list of what we believe to be valid properties of this market. We then represent these

hints by virtual examples, and proceed to incorporate them in the objective function.

The improvement in performance will only be as good as the hints we put in. The

idea of soft hints allows us to use hints that are less reliable taking into consideration

how much con�dence we have in them.

The two curves in �gure 1 show the Annualized Percentage Returns (cumulative

daily, unleveraged, transaction cost included), for a sliding one-year test window in the

period from April 1988 to November 1990, averaged over the four major FX markets

with more than 150 runs per currency. The error bar in the upper left corner is 3

standard deviations long (based on 253 trading days, assuming independence between

di�erent runs). The plots establish a statistically signi�cant di�erential in performance

due to the use of hints. This di�erential holds to varying degrees for the four currencies;

the British Pound, the German Mark, the Japanese Yen, and the Swiss Franc (versus

the U.S. Dollar), as seen in �gures 13-16.

In each market, only the closing prices for the preceding 21 days were used for

inputs. The objective function we chose was based on the maximization of the total

return on the training set, not the minimization of the mean square error, and we

used simple �ltering methods on the inputs and outputs of the networks. In each run,

the training set consisted of 500 days, and the test was done on the following 253
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Figure 13: British Pound Performance with and without hint
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Figure 14: German Mark Performance with and without hint

Y. Abu-Mostafa 31 { Hints {



-4

-2

0

2

4

6

8

10

12

0 50 100 150 200 250

A
n
n
u
a
l
i
z
e
d
 
P
e
r
c
e
n
t
a
g
e
 
R
e
t
u
r
n

Test Day Number

usjy: without hint
usjy: with hint

3 σ

Figure 15: Japanese Yen Performance with and without hint
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Figure 16: Swiss Franc Performance with and without hint
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days. Figures 13-16 show the results of these tests averaged over all the runs. All

four currencies show an improved performance when the symmetry hint is used. The

statistics of resulting trades are as follows. We are in the market about half the time,

each trade takes 4 days on the average, the hit rate (percentage of winning days) is

close to 50%, and the Annualized Percentage Return without the hint is about 5% and

with the hint is about 10%. Notice that having the return as the objective function

resulted in a fairly good return with a modest hit rate.

Since the goal of hints is to add information to the training data, the di�erential in

performance is likely to be less dramatic if we start out with more informative training

data. Similarly, an additional hint may not have a pronounced e�ect if we have already

used a few hints in the same application. There is a saturation in performance in any

market that re
ects how well the future can be forecast from the past. (Believers in the

E�cient Market Hypothesis [21] consider this saturation to be at zero performance).

Hints will not make us forecast a market better than whatever that saturation level

may be. They will, however, enable learning from examples to approach that level.

SUMMARY

The main practical hurdle that faced learning from hints was the fact that hints

came in di�erent shapes and forms and could not be easily integrated into the standard

learning paradigms. Since the introduction of systematic methods for learning from

hints �ve years ago, hints have become a regular value-added tool. This paper reviewed

the method for using di�erent hints as part of learning from examples. The method

does not restrict the learning model, the descent technique, or the use of regularization.

In this method, all hints are treated on equal footing, including the examples of

the target function. Hints are represented in a canonical way using virtual examples.

The performance of the hints is captured by the error measures E

0

; E

1

; � � � ; E

M

, and

the learning algorithm attempts to simultaneously minimize these quantities. This

gives rise to the idea of balancing between the di�erent hints in the objective function.

The Adaptive Minimization algorithm achieves this balance by relating the E

m

's to

the test error E.

Hints are particularly useful in applications where the information content of the

training data is limited. Financial applications are a case in point because of the

nonstationarity and the high level of noise in the data. We reviewed the application

of hints to forecasting in the four major foreign-exchange markets. The application
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illustrates how even a simple hint can have a decisive impact on the performance of a

real-life system.
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