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We report new results about the impact of noise on information U.S. dollar/German mark market has undergone extreme
processing with application to financial markets. These results changes in volatility.

quantify the tradeoff between the amount of data and the noise | gpite of the high levels of noise, financial data are
level in the data. They also provide estimates for the performance the best lication d ins for intelli t
of a learning system in terms of the noise level. We use these result_?mOng e best app 'Ca_ lon omglns or intefligent process-
to derive a method for detecting the change in market volatility 1Ng and advanced learning techniques. These data have been
from period to period. We successfully apply these results to the recorded very accurately for very long periods of time. They
four major foreign exchange (FX) markets. The results hold for are available on different time scales and are simultaneously
linear as well as nonlinear learning models and algorithms and 5\ ailable in many different markets. This provides a very
for different noise models. . . . . - -
o rich environment for analysis and experimentation using
. Keywords—Bounds, convergence, generalization error, learn-  adyanced processing techniques. Moreover, the payoff for
ing, model limitation, noise, test error, volatility. . . . !
even minute, but consistent, improvements in performance
is huge.
I. INTRODUCTION In this paper we tackle the question of information
Information processing of financial data entails the ex- Processing of financial data and how it is affected by the
traction of relevant information from overwhelming noise. Presence and variability of noise in the data. In doing so, we
The levels of noise in financial markets are such that the do not restrict the distribution or the time-varying nature of
than 50% of the time [1]. To complicate matters further, @lgorithm that we use. We report new results that provide
one also needs to be reasonably sure that one is not bein%uantitative estimates of the optimal performance that can
fooled by a finite set of examples from historical data into P€ achieved in the presence of noise. In financial markets,
believing that the performance is acceptable when it is this provides a benchmark for the target performance given

actually (and disastrously) slightly worse than acceptable. @ set of data. We also quantify the tradeoff between the
In addition to being a nuisance that complicates the amount of data needed and the level of noise in the data.
processing of financial data, noise plays a role as a tradableQur experiments with real foreign exchange (FX) data
commodity in its own right. Indeed, market volatility is the ~demonstrate that the results are applicable to the case of
basis for a number of financial instruments, such as optionsf'”'te data, which is the only case of practical interest. They
[2], whose price explicitly depends on the level of volatility @ISO provide a means of assessing the change in the level of
in the underlying market. For this reason, it is of economic noise in financial data that can be applied to volatility-based

value to be able to predict the changes in the noise levelfinancial instruments. _ _
in financial time series as these changes are reflected in The paper is organized as follows. Section Il introduces

the price changes in tradable instruments. These changedinancial time series and Section IIl covers the main results
can be significant, as one can observe in Fig. 1, where the@bout the impact of noise. These results are tested in the
four major FX markets in Section IV. The appendixes
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Fig. 1. The price curve for the U.S. dollar versus the German mark. The market volatility can
change noticeably over the course of time.

stock prices or FX rates. For financial time series, it is of details of such methods are not our present concern. We are
economic interest to predict the value at some time in the interested in determining how our prediction performance
future. Thus, we would like to extract as much information depends on the amount of available data and the variability
as possible from historical data with the hope of learning of the data [which is related to market volatility (1)]—what
the underlying behavior. In general, we can consider the change in performance are we to expect if this year's market
value of a time serieg(t) at any timet as a noisy data  js more volatile than last years market? What change in
pointy = f(x) + . Here f is a deterministic function of  performance relative to some benchmark are we to expect

a vectorx(t) of market indicators and(t) is noise (we f the market changed recently and hence we only have a
illustrate this in Fig. 2). The task at hand is one of learning few data points from which to learn?

f(-) from a finite data set (the history of the series). Pricing information is available on a variety of time
In modeling the time variation of a stock pricg, the scales, which presents us with a data set size versus
oy B et ot e o " vatabity vade, W cou choos 1 use e tichy
tick data because we will then have many data points, but
dS = jiSdt + &S/t the price we have to pay is that these data points are much
noisier. The tradeoff will depend on how much noisier the
whereé is the market volatility andy has a zero-mean nor-  tick-by-tick data is and the details of the learning scheme.
mal distribution with variance one. Thus, the Black—Scholes Market analysts would like to quantify this tradeoff by how
model uses only the previous price as the indicator vector it affects performance.
The price at different times has a deterministic dependence An estimate of the best performance that we can achieve
on the past (thg: term) and a noisy component (tie  with a given information extraction scheme might also be
term). The variance of the noisy component is related to economically useful. In addition to providing a criterion
_the yolatility and need not be constant. The precise relation for selecting between different models, knowing the model
is given by limitation could be useful for determining whether even
02 = 52AS52 1) an unlimited amount of data will give a system that is
! ! financially worth the risk. This would allow analysts to
wheres is a time index, and\S; is increment in the stock  compare trading strategies based on their model limitation.
price from time: to time ¢ + 1. It is to be expected that when markets are volatile, the
Extensive literature already exists on methods for ex- performance of a learning system drops. However, the
tracting information from noisy time series [3]-[7]. The effects of the noise should become less pronounced with
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Fig. 2. Financial time series tend to be very volatile. Above is the realization of one such time
series from the FX markets. Error bars are used merely to illustrate that each point is the outcome
of a noisy event.

increasing data availability. In the next section we quantify L
this intuition. D g€ H
= [(AH]

lll. I MPACT OF NOISE ON LEARNING ) )
Fig. 3. The learning setup.

In this section we address the issues raised in Section |l
in the context of learning theory. We begin by setting up . . _
the learning problem, restate the questions in the learningselect a particular learning system, which takes a data set

theory framework, and present theoretical and experimental@s input and produces a hypothesis function (see Fig. 3).
results. Definition 111.1: A learning system( is a pair{A, H}.

Additive noise is present in the training data
yi = f(xi) + &

We further assume that the noise realizations are indepen-
dent and zero mean, so

A. The Learning Problem

We assume the standard learning paradigm. The goal
is to learn a target functionf : RY — R. A training
data setDy is given, which consists ofV input output (c|x)e =0, (ec"|x). =diag[o7,03,...,0%]
pairs {x;,y;}¥,. Eachx; € R? is drawn from some
input probability measuréZ’(x) which we assume to have
compact support. Learning entails choosing a hypothesis
function g from a collection of candidate functiorfg. We
will assume that the target functiofi and the candidate

:‘unculonSg % 7|-£bare conynucf)lus. Tr?e Sét |shcalled the q Ichosen by the algorithm. We define the test errorgsr,
earning model because it reflects how we choose to model g e expectation of the squared deviation betwgen

:he target Ifum.:tr'lm-ll;he hél/pothesus func]:uon IS ChOS‘?” by 2 and f(x) taken over the input space. Thus the test error
earning algorit ased on some performance Criterion o ,q res the ultimate performance of our system after it

on th? data. We assume thati_s amappingA : Dy — H. _ has learned from the data. We denote the test error by
A typical learning algorithm might be one that uses gradient Elgp, ] as follows:
N :

descent to select the hypothesis which minimizes the mean )
squared error on the training set. Given a learning task, we Elgpy] = (905 (%) — f(x))7),.- )

(we use(-) to denote expectations, = [0102...0x] and
diag[-] denotes a diagonal matrix). It should be noted that
we allow the noise variance to change from one data point
to another, which is always the case in financial markets.
Define gp .. (x) € H as . A(Dy), the function that was

2186 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998



Expected Test Error

0.25

0 | | 1 |
0 50 100 150 200 250

Number of Training Examples

Fig. 4. Experiments illustrating the behavior of the test error as a functiaN &6r various noise
levels with variances ranging from 0.25—-6.25. A nonlinear neural network learning model was used
with gradient descent on the squared error. Data was created using a nonlinear target function.

We can further define the expected test effg(o) as the in Section Il lie in the behavior of y () and A (A, o, N).
expectation of the test error taken over possible realizationsWe address these questions analytically next.

of the noise and the data set as follows:
B. Performance of a Learning System
8N(0') = <E[9DN] >E Dy’ (3) | s ..
P ntuition tells us that noisier data leads to worse test

The goal is to minimizeEx (o). Ex(o) represents the per_formancg. T.his is because the learning system attempts
expected test performance averaged over the choice oftO fitthe noise (i.e., learn a random effect) at the expense of
training examples. It is related to the “future profit” you fitting the true underlying dependence. However, the more
expect to make having trained your learning system on the data we have, the less pronounced the impact of the noise
available datag (o) will depend on the detailed properties Will be. Th|s intuition is |Ilustrat9d in Fig. 4. We observe
of the learning system and target function. It would be a that the higher the noise, Fhe higher the test error, but the
daunting task to tackle the behavior &f;(¢) in general, curves appear to be getting closer to each other as we
but as we shall see, under quite unrestrictive conditions theUSe more and more examples for the learning process. We
changes irfx (o) as the noise or data set size change can Would like to quantify this idea.
be quantified. This will be related to the tradeoff in profit N order to be able to do so, we need to restrict ourselves
when attempting to learn and predict during more volatile t0 stable learning systems. Stable learning systems possess
stages of the market compared to less volatile stages. the two properties “continuity” and “unbiasedness.” Conti-

A related quantity of interest is\, the number of  Nuity ensures that “close” data sets are mapped to “close”
data points (with noise added) that are needed to attainfunctions. For two data sets differing only by the addition
a test error comparable to that attainable whenoiseless ~ Of zéro-mean noise, unbiasedness requires that, at every

examples are available. point, the average value (with respect to the noise) of the
R functions resulting from the noisy data set is equal to the
N(A o, N) = I%rin{N1 :En(0) —En(0) S A} (4) value of the function resulting from the noiseless data set.

(Refer to the appendixes for formal definitions.)
N(A,0,N) is the number of noisy examples that are  These properties are somewhat intuitive, and we note
equivalent to/N noiseless examples, and it describes the that, for any learning systenf, they can be checked
tradeoff between numerous, more volatile data versus fewerdirectly. We would like our learning procedure to be robust
and less volatile data. The answers to the questions posedoward small noise fluctuations in the data so we do not

MAGDON-ISMAIL et al. FINANCIAL MARKETS 2187



consider learning models that may vyield discontinuous The results are illustrated in Fig. 5. Artificial data sets
behavior. The unbiasedness property may seem fragile, eswere created from a known target function. Fig. 5(a) il-
pecially given the extremely nonlinear nature of a learning lustrates the results of fitting a linear model to nonlinear

algorithm. Nevertheless, we consider it an important and data. Shown is the residual erréiy(c) = En(o) —
not overly restrictive condition on a learning system. If the £x(0). The inputs are chosen fromR?, and the dashed
noise is small, then the first order change4tD ') should lines illustrate that€y (o) quickly converges to3s2/N

be proportional to the noise parameter so that the averageas expected from (5). Fig. 5(b) shows similar results for
change is zero with zero-mean noise. Indeed, experimentsa nonlinear learning model. Gradient descent was used to
with neural networks show that learning with gradient train the three hidden unit neural network models. Ideally,
descent and conjugate gradient descent on the mean squarede expect this algorithm/model pair to be continuously
error are unbiased with a reasonable noise level. Thus,compatible, and it was empirically shown to be mean
linear and neural network learning models give learning preserving. The residual errors very closely foll29¢2 /N,

systems that are stable. showing that we have approximate equality in (5) for
We then have the following theorem. C; ~ 20.1 Figs. 5(c) and (d) show thaty (0) also behaves
Theorem II1.2: Let £ be stable. Theive > 0, 3C; such linearly in 1/N for both cases [i.e., it quickly approaches
that using£, it is at least possible to attain a test error the bound in (6)].
bounded by
— C. Estimating the Model Limitation
a Cl 1
En(o) < En(0) + +e+ O<F> ) When the learning model is linear, we can show (Theo-
rems B.2 and B.3) that the expected training edg(o)
En(0) < Eo+ @ +e+ 0<i) (6) (the error on the data set) and expected test error approach
N N the same limiting value from opposite sides Hs— oc.

Furthermore, the rates of convergence to this limiting value
are the same. Amari [9] has obtained a similar asymptotic
result in the case of nonlinear models when performing

wherelimy ... Ex(0) = Eo ando? = L 3 02.C1, Gy

are constants that depend on the input distribution, target

function, and learning system. , gradient descent on the training error. Using the Amari
The proof can be found in Appendix Il (Theorem B.5). oyt we can use our bound on the test error to bound the

Furthermore, in certain cases we can combine (5) and (6)y4ining error performance. The expected error on a noisy

to get data Set,.; is related taSx (o) by Eieei (0) = En(0)+02.
CloZ 4+ Co 1 The experiments demonstrate that the bounds of Theorem
En(0) < Ep + —~ + O<N)' @) [ll.2 are almost saturated for smaN, so, ignoring terms
that areo(1/N), and using Amari’s result we have
The essential content of the theorem is that the expected o 0%+
test error increases in proportion 48 holding everything Ey+ 0?2 < &esi(lo) ® Fg+o2+——=  (9)
else constant, and it decreases in proportiotyty¥ holding 02 NC
everything else constant. The conditions of Theorem 111.2 Eo+02> Ex(o)~ Ey+0? — C1o” +C2 (10)
are quite general and are satisfied by a wide variety of N

Iearning models and algorithms. For Iearning models that (|n the case of linear |earning models we can repmlcby
are linearC; = d + 1. Ey is the model limitation modulo d + 1). From the data set of siz¥, for N; < N, we can
the Iearning algorithm when tested on noiseless dﬂa Therand0m|y p|CkN1 data points (perform bootstrapping [10]
limiting performance on noisy future data B, + o2 on the training data). Thus, by varyin§, in the training
One expects that for more complex models, the model phase and observing the error on the training set, we obtain
limitation (Fy) is lower than for less complex learning an estimate of the model limitatioB, 4+ o2. This method
models. However, the convergence paramef€rsCz) are  also immediately furnishes an estimateCe®2 +Co, S0 we
expected to be larger for more complex models. Thus, for can estimate the parameters that are needed for the bound
a given number of data points, there will be an optimal (7). This is illustrated in the Section 1V, where we apply the
model complexity (e.g., number of hidden units for a neural results presented here to the case of financial time series.
network) minimizing the bound of Theorem 111.2. One can
compare this tradeoff to the bias-variance tradeoff [8]. IV. APPLICATION TO FINANCIAL MARKET FORECASTING
Experimentally, we observe that the bounds of Theorem ) ) )
.2 are quite tight even for smallV (see Fig. 5), so We can apply the results of Section Il to real financial

combining (5) and (6) we expect the following dependence market data. Fig. 6 illustrates the/N behavior of the

for A(A, o, N), the number of noisy examples that are esidual error£y (o) for FX rates.

equivalent toN noiseless examples: Daily close exchange rates between 1984 and 1995 were
used for the Swiss franc (CHF), German mark (DEM),
o2C +C British pound sterling (STG) and Japanese yen (JPY). A
N(AJ’N)NUC;JFAQ' ®) p g (STG) p yen (JPY)
~ T 1This suggests that the condition in Corollary B.6 holds.
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Fig. 5. (@) Nonlinear target function and linear learning model—the residual error is shown for a
nonlinear target function trained using a linear model. Gaussian noisesWittanging from 0.04

to 38.44 was added to training sets. The dashed lines show the error level predicted by Theorem
B.2. (b) Nonlinear target function and nonlinear learning model—the residual error is shown for a
nonlinear target function trained using a 2-3-1 network. Gaussian noiser#ithnging from 0.25 to

6.25 was added to training sets. The results correspond very closely to those predicted by Theorem
111.2 when C; = 20 (shown with dashed lines). (c) The behavior of the expected test error with no
noise for the learning scenario in (a). We observe that for even skhdlere is close agreement
between the theoretical/ N decrease. (d) The behavior of the expected test error with no noise for
the nonlinear learning scenario in (b). Once again for sivallve observe the expected behavior.

linear model was used to learn the future price as a functionto be tight for both the test error and training error, we are

of the close price of the previous five days. able to estimate the best possible performance of the linear
We performed the following experiments. The last 1000 model by finding the line best fittingy (0) as a function

data points of each time series were held out as a test setof 1/N. Table 1 summarizes these estimates.

The remaining points were used to create a data set We compare the model limitation to that of simply

predicting the present value as the next value. We find

that this simple strategy virtually attains the model lim-

N, points were sampled from this set and used to learn. itation suggesting that today's price completely reflects
This was repeated to obtain an estimate of the expectedtomorrow’s price—which is the best we can expect to

test and training error. We show the dependence of theachieve systematically. The results in Table 1 are appealing
expected test error on the number of training examples inon two accounts. First, assuming that today’s price is
Fig. 6. Though it is not obvious that the assumptions made the best predictor of tomorrow’s price, the technique we
to derive the results hold, as with the results on artificial use to predict the model limitation is performing well.

data, the test error seems to not only obey the bound of (5),Second, because the model limitation estimates are slightly
but it assumes quickly/N behavior. Assuming the bounds below the error of the simple strategy, we deduce that

{xx = (Sk—ay- -+ Sk), Uk = Sky1}-
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Fig. 6. The dependence of the test eridg-on N is depicted for the British pound (STG), the
Swiss franc (CHF), the Japanese yen (JPY), and the German mark (DEM). Also shown are two
lines that showl /N behavior. We see that the test error curves follow the theory well.

Table 1 Estimate Of Model Limitation and
Comparison to Simple Predicfor

Currency | Ep Est. | No Change
DEM 0.000499 0.000502
CHF 0.000158 0.000160
STG 0.000134 | 0.000136
JPY 1.082 1.083

@

Currency | Egy Est. | No Change
DEM 0.000156 0.000152
CHF 0.000148 0.000151
STG 0.000153 0.000157
JPY 0.851 0.867

(b)

there is some information that can be extracted from
previous prices.

By training on different time periods, we find that the
model limitation may change. If we assume the underlying
dependence to have remained constant so Aljalhas not

2|n (a) we use the training error to estimal® + o2 and compare

changed, then the resulting change can only be due to a
change ino2, thus providing an estimate of the change in
the volatility [since the volatility is related to the change in
=2 (1)]. It appears from Table 1 that of the four currencies,
the STG’s volatility seems to have increased while the
remaining three markets display decreasing volatility.

We see that the results of Section Il apply to the problem
of financial forecasting. Experiment bears out the fact that
the answers to the questions posed in Section Il lie in the
expressions fofx (o) and N (A, s, N) in (5) and (8).

V. CONCLUSION

The new results in Section Il are represented in Theorem
ll.2. The experimental results on artificial data amply
support the theory. We have shown that the number of
noisy examples required for comparable generalization with
N noiseless examples increasesyasExplicitly, the main
result bounds the test error for a noisy data sef byo) <
Eo + (02C; +C4)/N +o(1/N). We also obtained a result
that bounds the expected test error relative to a benchmark

to the performance on the training set when we use the simple systemiast error (5) Experimentally we showed that this result

“predict no change in price.” In (b) we use the test error curve to estimate
FEy. Only (a) is possible in practice, but both yield very good estimates

(if we assume that this simple strategy is close to the best you can do),

applies to the nonasymptotic regime—the empirical results
show that the bounds hold with almost equality foras

thus verifying that the results of Section Ill can be applied to this learning gmall as 20. Intuitively, this is because the nonasymptotic

problem. The change in the estimate from (a) to (b) is due to the fact that
the test and training sets are taken from different time intervals, and hence

the estimates reflect a change in the market volatility over time.

2190
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We began with the goal of answering two questions (ini-  We would like A to be “unbiased” in the following sense.
tially posed in the context of financial time series): relative If we have a data seD with A(D) = go and we add
to a benchmark scenario (that of learning with no noise), independent, zero mean noise to the targets to get a new
how does the performance change as the noise and numbedata setD’, then we would like{ A(D')) 0ice = g0, Where
of examples changes? This dependence is represented bthis average of functions is taken pointwise. This motivates
the expression fof i (o) above. This expression is a similar  the following definition.
result to those derived by Amari in [9] and Moody in [11]. Definition A.2: Let D and?’ be two data sets related by
However, the differences are significant. Amari compares y’ = y + ¢, where thee;’s are independent and zero mean.
the training error when descending on a given error function Then £ is mean preserving or unbiased (fA(D")). =
to the expectation of that error when you have finished A(D) with probability 1 (i.e. for almost ever).
learning. The learning algorithm is specific but the form of  Definition A.3: A learning systemf is stableif it is in
the error function may vary. Moody considers minimization CCs and it is mean preserving.
of an error term plus a complexity term and assumes that the
input distribution is a sum of delta functions at the training AppenDIX II
data points. In this paper, we derive a convergence resultproors oERESULTS
for the e>_<pected _squared error with_out_ seyerely restricting Proposition B.1: If £ € CC,, then £ € CC,, for m =
the learning algorithm or the input distribution. The results .
were presented in the context of financial time series
analysis, but we note that they are applicable to the general
learning problem, independent of most of the details of
the learning model and learning algorithm. In particular,
we do not require the learning algorithm to minimize a
simple training error measure—optimizing a generalized
regularized training error (as in [12]) should produce an X=[x1 x2 ... Xn], y=f+e¢
algorithm that still satlgfles the conditions of Theqrem II!.2. 2= (o), q = (f ().

We provided an estimate of the model limitation which
we used to estimate the best possible performance when The law of large numbers gives us tH¥X7 — y_ oo
learning in the FX markets. The results were consistent with &% and Xf — y_., N{(xf(x))x. where we assume that
the assumption that today'’s price reflects all the information the conditions for this to happen are satisfied.
about tomorrow’s price. Using this method for predicting  Theorem B.2:Let H, the learning model, be the set of
the model limitation, we could detect changes in the market linear functionsw - x + wg, and let the learning algorithm

Proof: By Jensen’s inequality(| f(x)|*)x < {|f(x)])2
for 0 < a < 1. Letting f(x) = n(x)™, as in Definition
A.1, anda = m/n for m < n, the proposition now follows
becauseL € CC,,. O

We use the notation

volatility, which is of economic use. be minimization of the squared error. Then

It would be useful to explore the relationship between —
the constantg Fy,C;,Cs) that parameterize the expected En(o) = Ex(0) + o*d+1) + O<L> (11)
test error dependence. N N?

B 1
En Ey+—=+4+0 12

APPENDIX | ~(0) = £ N <N2> (12)
DEFINITIONS _ where Ey = limy_,..{Ex(0)} and B is a constant depen-

One expects tbat if one has “close” data sBtg — dent on the input distribution. It follows tha{ (A, o, N) =
{xi, f(xa)} andDy = {x;, f(x:) + e(x;)} wheree(x;) is (02(d+ 1)+ B)/(A + (B/N)) + O(1/N3).
small, thenA(Dy ) should be “close” ta4d(D)). For A to Proof: ¢ € £ < g(x) = xTw. The least squares

have this property should be able to implement the two  ggtimate ofw is given by

“close” functions® We formalize this notion by defining the

class of learning systems that arth order—continuously w = (XX")"'Xy (13)
compatible(CC,,) with respect to the probability measure
dF(x). We will use the following notation LeS be the
compact support fodF'(x) and let {x;}Y; C S. Let En(o) = (WTxxTw — 20Txf(x) + F(x)2)x x.c
D = {Xivyi}zz\;h D = {waz + 61}1: be any two data o

from which we calculate

— 2 T~rT Ty—1
sets onS such thatmax; ¢; = enax. Let A(D) = g(x), = >T T<f XT(XIX ) >1’fql
AD) = g(x) + n(x). + (F7 X7 (XXT) T E(XXT) T Xf)x
Definition A.1: £ is nth order—continuously compatible + (e TXT(XXT) In(xXxX™)~ 1Xe>
if 3C such that — £x(0 <[XT XXT

<|77(x)|n>x S (Ccmax)n
with probability one (i.e., for almost ever). We will

write £ € CCp. where we have used (1) arg= (xf(x))x. By the law of
3These conditions will often be satisfied in practice. large numbers, we note théKX”*)~! —y_., N and

sty x| )
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Xf —n—o Nq, SO We write
XX' = NY +VNV(X) Xf=Nq+VNaX) (14)

where (Vyx = (a)x = 0 and Var(V) and Var(a) are
O(1). Using (14) and the identityl + AA) ™! =1 - A +
A2A2 + O(X%) we have

XT(xxX")~tyxxh)=t1x
_XIyIX 2XTE—1VE—1X
N2 N2

XTy-lvy-lvy-1x 1
3 +0(5z):

N3 I

2

From the definition ofX we find from the first term

(X2 X)) = <ZEZII(Xi)k(Xi)z>
k.l

@

= Zz,jzkl =1
R,

by taking the expectation of the trace of both sides of the
equation, the second term can be shown to be of the same

order as the third term. So

o2
Enlo) = En(0) + E&; + O<%>. (15)

The first part of the theorem now follows. Using similar

techniques for€x(0), we find

0
Ty —1yry—1 Ty—1,\
_ Q'Y Vi T'q—-a'¥Tq
Ex(0) = () — T g + ¢ . )
Nz
1
+ —(q"ETVETIVETlg +at s a

N
1
—2a'y7lveTiq) + O< 5 )
Nz

B 1
:E — _
0+N+O<N%>

with Eg = (f?) — q?’~~'q and B depending on the input
distribution. This gives théV dependence & (0). Finally
we have

o2(d+1)+B B
SN(U)—SN(O):%—N:A

yielding the functional dependendé(A, o, V). O

Theorem B.3:Let H, the learning model, be the set of
linear functionsw - x + wy, and let the learning algorithm
be minimization of the squared error. Then

£,(0) = £,(0) + 0% — w (16)
&0 =55 +0( ) a7)

where E, and B are the same constants appearing in
Theorem B.2. Thus we find

Ex(o) — £.(0) = 2(02(dJ]rV1) + D) +0<%>' (18)

Proof: The residual error is given by

£,(0) = { HXFw =)

/\/\
>—\2|»—\

FRTXXT) X = 1)0)7)

= CUETE) — (FTXXXT) X + ()
— (XT(XXT) X))

ey (ETXTXXT)TIXE) 5 o3(d 4 1)

—ﬁf)— N to? - ——

£.(0)

from which the first part of the theorem follows. Using the
techniques of Theorem B.2 we find that

£(0)=(/*)-q"¥'q
1
- N(qTE_IVE_IVE_lq +al'y"ta

1
— 22Ty lve~iq) + 0< . )
N2

Comparing with Theorem B.2 we have the second part of

the theorem. O
This result is similar to the results obtained by [9], [11].
We now consider the case of a nonlinear learning model.

The following proposition shows thdim .. A(Dy) =

Joo 1S Well defined pointwise—i.eYe > 0, 3M such that

if N > M thenmaxy |goo — A(Dy)| < €. This can be

skipped if this fact is self evident or if one wishes to assume

convergence and one is merely interested in the rate. It is

included here purely for technical completeness.
Proposition B.4: Let £ € CCs. Then, the limitlimar_ o,

A(Dy) = g for noiseless data sets is well defined

This result can immediately be generalized to the case Pointwise on sets of nonzero probability—i.€c > 0, 3A/

where the learning model is linear in its parameter space. such that if NV > M, thenmaxy |goc — A(Dn)
A similar technique can be used to derive a result on the

< €.
Proof: We will sketch the idea of the proof, the details

expected mean squared residual itself which we will call can be filled in using exactly the same techniques as for

E(o).
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two infinite data sets, the learned functions are essentiallydata points inC;, and lety; = (1/Ni) >, cc, ;- Let
identical. For any infinite data set, as the input support is P, = Pr{z € C;}. We only need consider regions where
compact (closed and bounded), any infinitesimal volume of P, > 0, as regions with?;, = 0 are “don’t care” regions.
nonzero probability has an infinite number of data points. The following Lemma is easily obtained by noting that for
Consider two such data sets. The means of the targets in thisc x/ ¢ ¢, | f(x) — f(x')| < 6. O
small volume will be equal (by the law of large numbers). | emma B.8:Let x € C;
Because the target function is continuous on this compact

support, the means for the two data sets are arbitrarily close 1 | 3 . |
to the true values for each data set (this can be attained| — Z v — fX)| = | — f(x)| < 2+ [ &mcc TR
by letting the size of the volume be arbitrarily small). By Ni x,€C; Ni
continuous compatibility, these two data sets must both be

mapped arbitrarily close to the data set with the means as Construct a new data set by replacing all #ie in C;
targets. Therefore they must be mapped arbitrarily close by 44, i.e., with no noise the targets would iféx;), and
to each other. Thus, we see thay, — g2)°) is less than  with noise they args. Vx; € Cj

e for arbitrary smalle where the two different data sets

drawn from the input distribution are mapped o So xp) — (%) Dp co €k
we conclude that/(g; — g2)?) = 0, thereforeg; = go pi = (%) + Z It k)Nif( ) + k]irlc
with probability one. Thus, any two infinite noiseless data Xk,
sets are mapped to the same function (as the functions are || <5
continuous), which we call. = f(x;)+n; +&
Finally, consider a data s&y. For IV large enough, this
data set can be made arbitrarily close to an infinite data setyhere M = Dopun, (F(x) = f(x;)/N;) and & =

using the argument above. Lgky = A(Dy). Therefore S o ex/N;. We have thatn;)p, = 0 and (¢;). = 0.
2 : . . L eC; 1 7 N jle
{(9xv — 900)") can be made arbitrarily small by choosifg | ot 4 map the noiseless data setgpe H and this noisy

. _ 2 _ ]
large enough. In other wordkmny—oo((g — 90)°) = 0, version of the data set 9 = g + 7. So for the test error
thereforegy converges t@.., with probability one. Further,

because the functions are continuous and the support isWe have
compact, this convergence is uniform. O < _ 9
We have just shown that the limit(Dy ) exists asV — M) = (] = 9 )Drxe
0. Thus, with noiseless data sets, we have convergence for = {(f = 90)")Drx,e + 2{(f = 90)(90 = 9Dy x,c
stable learning systems. We now consider both the rate of £x(0) T

convergence and what happens when noise is added. + (g0 — 9)2)p
Theorem B.5:Let £ be stable. Let the target functigh Nt Ly

be continuous. Let the probability measure on the input T3

space have compact suppdtt ThenVe > 0, 3C; > 0

such that using’, it is at least possible to attain a test error We now examineT; and 7.

bounded by
77| = [{(f — 90){90 — 9)e) D x|
) @ _
Ex(0) < Ex(0) + 0]\?1 +€+O<$>' (19) = [{(f — g0) (Al xx, f(x1)})
— A({xk, f(xn) + m: 1)) D x|
Corollary B.6: If C; < C7 Ve, then < (AW, £}
— A({xx, f(x2) +m1))) Do x|
20 A . .
SN(O—) < ((:N(O) + g C(1 + <L2> (20) + |<90( ({kaf(xk)})
N N — A({x%, f(x2) + m: 1)) D x|
(b)
Corollary B.7: Hmy—eo Ex(0) = limy—oe Ex(0), in- < <1n3X|go|<|A({Xk,f(Xk)})
dependent ofs.
Proof: By rescaling, we can assume that the input space — A({xw, f(xr) + 77k})|>X>DN
X C 8 = [0,1]¢. f is continuous, so it is uniformly (e)
continuous on the compact st Therefore 36; such that < 052<In)§x |go|>D
(d)
x — x| <é1 = [f(x) = f(x)] < 62 < 16,

Divide [0, 1] into intervals of size$; /v/d. Thus we divide where (a) and (b) follow from the mean preserving assump-
S into (v/d/6,)¢ cubes. LetC; = Ciy ig-iy define the tion. (c) from continuous compatibility and (d) because we
cube with lowest coordinatess Let V; be the number of  assume the limiy., to exist pointwise. Similarly, fofl>
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we get space have compact support. Thén> 0, 3C; > 0 such
that usingL it is at least possible to attain a noiseless test
[T = |[{((A{x%, f(xx)}) error bounded by
X

— A({xr, F(x8) + 1+ E D)) D x| Cs 1
Ev(0)< Eg+ —+4e+o| —=}. (21)
(@) 2 2 Ex]-,kaCicjck N N
i ! Dye Corollary B.10: If Cy < Cj Ve thenén(0) < Eo+ 32 +
5 O(%) WhereEO = limpy_ oo SN(O)
= 207 5§+< a_i> Before we proceed to the proof of the theorem, the
i D following lemma is needed.

Lemma B.11:Let N balls be independently be dis-
(k) 202 | 82 +§<Z i> tributed intor cells according to the probabilitigs . .. p,.
2 Then for everym > 0, 34,, such that the probability
P that at least one cell is empty is bounded by

i

N 1/N
=202%62 + 20%02 = PM1— PN A,
2t azi:nﬂn n 7 ( ) QSNm'
o +0 () Proof:
— 20262 4 o? 92 Z 1 4O RS q = Pr[U cell; is empty
N b N2 < ) Prlcell; is empty = Y (1 —p)~
@ @

N A
. e . <rtl-— i 7‘) < m
(a) follows from the continuous compatibility assumption. =7 ( WP )= Nm

(b) follows because the noise is chosen independently of thechoosingAm > r(—m/In(a))™, wherea = 1 — min p;. O

inputs. Choosing); such thate; 6, 4+ 2C?6% < « we have = i
Proof of Theorem B.9.Let X', S, 61, 62, C, P;, N; be

Ci(e)a? 1 as in the proof of Theorem B.2. We only consider those
+ e+ O F

En(o) < EN(0) + cubes withP; > 0.

Suppose that we have an infinite noiseless datalsgt,

We note that it is easy to extend these theorems to the cas&0r alli, let g = (f(x))xpxec; and lety; = 3= 3, cc, ¥
where the noise variances are drawn from some distribution.if Ci is nonempty, elsg; = 0. Construct two data sets
By taking the expectation over that distribution, the same from the infinite one,D; andD,, by replacing all they's
result with o2 being the expected value of the variance N Ci by %, andy; respectively.D, does not depend on
parameter is obtained. Note also that the preceding proof 2N @nd D> can be obtained fronDy. Do, and D, are
is by no means suggesting a method to calcutdte It close data sets because fore C;
is simply a means to show its existence. Often, especially _ _ _
when the input distribution is bounded, Corollary B.6 will 1769 = (S @yiveas] =760 = /3)hiyecs]
hold, and it might be possible to estimate these constants <& = F@yiyees < b2

experimentally. Therefore, by continuous compatibilit( g, — ¢1)) <

One might wonder what would happen if the mean pre- C282. Define g by 1i; = % + . Then (;)p, = 0 for
serving assumption is violated. We note that the only place g nonemptyC;. Let goo, Lgl and g, be A(Do/o)v A(D1)
where this is used is in the evaluation 6f. Continuity and A(D,), respectively. Since we can constr@2t, using
could still be used, however the difference being that a ; e can at least obtain a test error given by
term of ordere/+/N would remain. In other words, one
would have&x (o) < Ex(0) + C”a/+/N + higher order. E <C?83
So if we do not have the mean preserving property, then En(0) < U = g00)?) + {(goo — g1)%) (g1 — g2)?)
these methods do not guarante&V convergence of the F2(f = go0)(goo — g1))]

test error. Using identical methods, one can, however, get L »

the following result using the continuity property alone: Sy oo lmax s

<|f — g|> < <|f — go|> + (CH/O'/\/N). This is very similar + 2|<(f _ goo)(gl _ 92)>|

to Theorem B.5 where one measures test error by the

expectation of the magnitude difference as opposed to the +2{(ge0 = 91)(91 =~ 92))]-

squared difference. By the mean preserving propert{(g; — g2)}p, = O.

We now derive a theorem on the dependencéef0). Therefore
Theorem B.9:Let £ be stable. Let the target functigh
be continuous. Let the probability measure on the input [{(f — geo)(g1 — 92))] = [{(f = o0 ){(g1 — 92))Dy )x| = 0.
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Similar reasoning shows tha{{(g.c — g1)(g1 — g2)}| = 0.
Let  be the probability that at least one cell is empty. For
the final term we have

(91— 92)) 2 (1 - Q)

Z 2
i D |Vi,N;>0

i v [ Ni>0
o2
<> A +a
i "' N0

2 1
a:—i—o(N)

+caQ

Ni>0

whereo? = Var(y; | y € C;). (a) follows by continuous
compatibility because with probability — ) the data sets
are at moste; apart and) ;e? > max;ef, and with

probability @ they are at mos2|f|ua.x apart. (b) follows
because(1/N;) = 1/(NF;) + o(1/N), and Lemma B.11
can be used to yield) = o(1/N). Finally we have

81\7(0) S EO + 0263 + 2|f - goo|max62 +

Choosingé, small enough, we have the theorem because

|f =

G, (1
N AN/

Joo| IS bounded on the compact suppéft O
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