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We report new results about the impact of noise on information
processing with application to financial markets. These results
quantify the tradeoff between the amount of data and the noise
level in the data. They also provide estimates for the performance
of a learning system in terms of the noise level. We use these results
to derive a method for detecting the change in market volatility
from period to period. We successfully apply these results to the
four major foreign exchange (FX) markets. The results hold for
linear as well as nonlinear learning models and algorithms and
for different noise models.
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I. INTRODUCTION

Information processing of financial data entails the ex-
traction of relevant information from overwhelming noise.
The levels of noise in financial markets are such that the
most one can hope for is “getting it right” slightly better
than 50% of the time [1]. To complicate matters further,
one also needs to be reasonably sure that one is not being
fooled by a finite set of examples from historical data into
believing that the performance is acceptable when it is
actually (and disastrously) slightly worse than acceptable.

In addition to being a nuisance that complicates the
processing of financial data, noise plays a role as a tradable
commodity in its own right. Indeed, market volatility is the
basis for a number of financial instruments, such as options
[2], whose price explicitly depends on the level of volatility
in the underlying market. For this reason, it is of economic
value to be able to predict the changes in the noise level
in financial time series as these changes are reflected in
the price changes in tradable instruments. These changes
can be significant, as one can observe in Fig. 1, where the
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U.S. dollar/German mark market has undergone extreme
changes in volatility.

In spite of the high levels of noise, financial data are
among the best application domains for intelligent process-
ing and advanced learning techniques. These data have been
recorded very accurately for very long periods of time. They
are available on different time scales and are simultaneously
available in many different markets. This provides a very
rich environment for analysis and experimentation using
advanced processing techniques. Moreover, the payoff for
even minute, but consistent, improvements in performance
is huge.

In this paper we tackle the question of information
processing of financial data and how it is affected by the
presence and variability of noise in the data. In doing so, we
do not restrict the distribution or the time-varying nature of
the noise, nor do we restrict the learning model or learning
algorithm that we use. We report new results that provide
quantitative estimates of the optimal performance that can
be achieved in the presence of noise. In financial markets,
this provides a benchmark for the target performance given
a set of data. We also quantify the tradeoff between the
amount of data needed and the level of noise in the data.
Our experiments with real foreign exchange (FX) data
demonstrate that the results are applicable to the case of
finite data, which is the only case of practical interest. They
also provide a means of assessing the change in the level of
noise in financial data that can be applied to volatility-based
financial instruments.

The paper is organized as follows. Section II introduces
financial time series and Section III covers the main results
about the impact of noise. These results are tested in the
four major FX markets in Section IV. The appendixes
include the formal definitions, theorems, and complete
proofs of all the results that we report.

II. FINANCIAL TIME SERIES PREDICTION

Financial markets present us with data in the form of a
time series. We might have the daily, hourly, or tick-by-tick
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Fig. 1. The price curve for the U.S. dollar versus the German mark. The market volatility can
change noticeably over the course of time.

stock prices or FX rates. For financial time series, it is of
economic interest to predict the value at some time in the
future. Thus, we would like to extract as much information
as possible from historical data with the hope of learning
the underlying behavior. In general, we can consider the
value of a time series at any time as a noisy data
point . Here is a deterministic function of
a vector of market indicators and is noise (we
illustrate this in Fig. 2). The task at hand is one of learning

from a finite data set (the history of the series).
In modeling the time variation of a stock price, the

standard Black–Scholes model for pricing options based on
volatility [2] assumes the variation to be of the form

where is the market volatility and has a zero-mean nor-
mal distribution with variance one. Thus, the Black–Scholes
model uses only the previous price as the indicator vector.
The price at different times has a deterministic dependence
on the past (the term) and a noisy component (the
term). The variance of the noisy component is related to
the volatility and need not be constant. The precise relation
is given by

(1)

where is a time index, and is increment in the stock
price from time to time .

Extensive literature already exists on methods for ex-
tracting information from noisy time series [3]–[7]. The

details of such methods are not our present concern. We are
interested in determining how our prediction performance
depends on the amount of available data and the variability
of the data [which is related to market volatility (1)]—what
change in performance are we to expect if this year’s market
is more volatile than last years market? What change in
performance relative to some benchmark are we to expect
if the market changed recently and hence we only have a
few data points from which to learn?

Pricing information is available on a variety of time
scales, which presents us with a data set size versus
variability tradeoff. We could choose to use the tick-by-
tick data because we will then have many data points, but
the price we have to pay is that these data points are much
noisier. The tradeoff will depend on how much noisier the
tick-by-tick data is and the details of the learning scheme.
Market analysts would like to quantify this tradeoff by how
it affects performance.

An estimate of the best performance that we can achieve
with a given information extraction scheme might also be
economically useful. In addition to providing a criterion
for selecting between different models, knowing the model
limitation could be useful for determining whether even
an unlimited amount of data will give a system that is
financially worth the risk. This would allow analysts to
compare trading strategies based on their model limitation.

It is to be expected that when markets are volatile, the
performance of a learning system drops. However, the
effects of the noise should become less pronounced with
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Fig. 2. Financial time series tend to be very volatile. Above is the realization of one such time
series from the FX markets. Error bars are used merely to illustrate that each point is the outcome
of a noisy event.

increasing data availability. In the next section we quantify
this intuition.

III. I MPACT OF NOISE ON LEARNING

In this section we address the issues raised in Section II
in the context of learning theory. We begin by setting up
the learning problem, restate the questions in the learning
theory framework, and present theoretical and experimental
results.

A. The Learning Problem

We assume the standard learning paradigm. The goal
is to learn a target function . A training
data set is given, which consists of input output
pairs . Each is drawn from some
input probability measure which we assume to have
compact support. Learning entails choosing a hypothesis
function from a collection of candidate functions. We
will assume that the target function and the candidate
functions are continuous. The set is called the
learning model because it reflects how we choose to model
the target function. The hypothesis function is chosen by a
learning algorithm based on some performance criterion
on the data. We assume thatis a mapping .
A typical learning algorithm might be one that uses gradient
descent to select the hypothesis which minimizes the mean
squared error on the training set. Given a learning task, we

Fig. 3. The learning setup.

select a particular learning system, which takes a data set
as input and produces a hypothesis function (see Fig. 3).

Definition III.1: A learning system is a pair .
Additive noise is present in the training data

We further assume that the noise realizations are indepen-
dent and zero mean, so

(we use to denote expectations, and
denotes a diagonal matrix). It should be noted that

we allow the noise variance to change from one data point
to another, which is always the case in financial markets.

Define as , the function that was
chosen by the algorithm. We define the test error for
as the expectation of the squared deviation between
and taken over the input space. Thus the test error
measures the ultimate performance of our system after it
has learned from the data. We denote the test error by

as follows:

(2)
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Fig. 4. Experiments illustrating the behavior of the test error as a function ofN for various noise
levels with variances ranging from 0.25–6.25. A nonlinear neural network learning model was used
with gradient descent on the squared error. Data was created using a nonlinear target function.

We can further define the expected test error as the
expectation of the test error taken over possible realizations
of the noise and the data set as follows:

(3)

The goal is to minimize . represents the
expected test performance averaged over the choice of
training examples. It is related to the “future profit” you
expect to make having trained your learning system on the
available data. will depend on the detailed properties
of the learning system and target function. It would be a
daunting task to tackle the behavior of in general,
but as we shall see, under quite unrestrictive conditions the
changes in as the noise or data set size change can
be quantified. This will be related to the tradeoff in profit
when attempting to learn and predict during more volatile
stages of the market compared to less volatile stages.

A related quantity of interest is , the number of
data points (with noise added) that are needed to attain
a test error comparable to that attainable whennoiseless
examples are available.

(4)

is the number of noisy examples that are
equivalent to noiseless examples, and it describes the
tradeoff between numerous, more volatile data versus fewer
and less volatile data. The answers to the questions posed

in Section II lie in the behavior of and .
We address these questions analytically next.

B. Performance of a Learning System

Intuition tells us that noisier data leads to worse test
performance. This is because the learning system attempts
to fit the noise (i.e., learn a random effect) at the expense of
fitting the true underlying dependence. However, the more
data we have, the less pronounced the impact of the noise
will be. This intuition is illustrated in Fig. 4. We observe
that the higher the noise, the higher the test error, but the
curves appear to be getting closer to each other as we
use more and more examples for the learning process. We
would like to quantify this idea.

In order to be able to do so, we need to restrict ourselves
to stable learning systems. Stable learning systems possess
the two properties “continuity” and “unbiasedness.” Conti-
nuity ensures that “close” data sets are mapped to “close”
functions. For two data sets differing only by the addition
of zero-mean noise, unbiasedness requires that, at every
point, the average value (with respect to the noise) of the
functions resulting from the noisy data set is equal to the
value of the function resulting from the noiseless data set.
(Refer to the appendixes for formal definitions.)

These properties are somewhat intuitive, and we note
that, for any learning system , they can be checked
directly. We would like our learning procedure to be robust
toward small noise fluctuations in the data so we do not
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consider learning models that may yield discontinuous
behavior. The unbiasedness property may seem fragile, es-
pecially given the extremely nonlinear nature of a learning
algorithm. Nevertheless, we consider it an important and
not overly restrictive condition on a learning system. If the
noise is small, then the first order change in should
be proportional to the noise parameter so that the average
change is zero with zero-mean noise. Indeed, experiments
with neural networks show that learning with gradient
descent and conjugate gradient descent on the mean squared
error are unbiased with a reasonable noise level. Thus,
linear and neural network learning models give learning
systems that are stable.

We then have the following theorem.
Theorem III.2: Let be stable. Then such

that using , it is at least possible to attain a test error
bounded by

(5)

(6)

where and .
are constants that depend on the input distribution, target
function, and learning system.

The proof can be found in Appendix II (Theorem B.5).
Furthermore, in certain cases we can combine (5) and (6)
to get

(7)

The essential content of the theorem is that the expected
test error increases in proportion to holding everything
else constant, and it decreases in proportion to holding
everything else constant. The conditions of Theorem III.2
are quite general and are satisfied by a wide variety of
learning models and algorithms. For learning models that
are linear . is the model limitation modulo
the learning algorithm when tested on noiseless data. The
limiting performance on noisy future data is .
One expects that for more complex models, the model
limitation is lower than for less complex learning
models. However, the convergence parameters are
expected to be larger for more complex models. Thus, for
a given number of data points, there will be an optimal
model complexity (e.g., number of hidden units for a neural
network) minimizing the bound of Theorem III.2. One can
compare this tradeoff to the bias-variance tradeoff [8].

Experimentally, we observe that the bounds of Theorem
III.2 are quite tight even for small (see Fig. 5), so
combining (5) and (6) we expect the following dependence
for , the number of noisy examples that are
equivalent to noiseless examples:

(8)

The results are illustrated in Fig. 5. Artificial data sets
were created from a known target function. Fig. 5(a) il-
lustrates the results of fitting a linear model to nonlinear
data. Shown is the residual error

. The inputs are chosen from , and the dashed
lines illustrate that quickly converges to
as expected from (5). Fig. 5(b) shows similar results for
a nonlinear learning model. Gradient descent was used to
train the three hidden unit neural network models. Ideally,
we expect this algorithm/model pair to be continuously
compatible, and it was empirically shown to be mean
preserving. The residual errors very closely follow ,
showing that we have approximate equality in (5) for

.1 Figs. 5(c) and (d) show that also behaves
linearly in for both cases [i.e., it quickly approaches
the bound in (6)].

C. Estimating the Model Limitation

When the learning model is linear, we can show (Theo-
rems B.2 and B.3) that the expected training error
(the error on the data set) and expected test error approach
the same limiting value from opposite sides as .
Furthermore, the rates of convergence to this limiting value
are the same. Amari [9] has obtained a similar asymptotic
result in the case of nonlinear models when performing
gradient descent on the training error. Using the Amari
result, we can use our bound on the test error to bound the
training error performance. The expected error on a noisy
data set is related to by .
The experiments demonstrate that the bounds of Theorem
III.2 are almost saturated for small , so, ignoring terms
that are , and using Amari’s result we have

(9)

(10)

(in the case of linear learning models we can replaceby
). From the data set of size , for , we can

randomly pick data points (perform bootstrapping [10]
on the training data). Thus, by varying in the training
phase and observing the error on the training set, we obtain
an estimate of the model limitation . This method
also immediately furnishes an estimate of , so we
can estimate the parameters that are needed for the bound
(7). This is illustrated in the Section IV, where we apply the
results presented here to the case of financial time series.

IV. A PPLICATION TO FINANCIAL MARKET FORECASTING

We can apply the results of Section III to real financial
market data. Fig. 6 illustrates the behavior of the
residual error for FX rates.

Daily close exchange rates between 1984 and 1995 were
used for the Swiss franc (CHF), German mark (DEM),
British pound sterling (STG) and Japanese yen (JPY). A

1This suggests that the condition in Corollary B.6 holds.
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(a) (b)

(c) (d)

Fig. 5. (a) Nonlinear target function and linear learning model—the residual error is shown for a
nonlinear target function trained using a linear model. Gaussian noise with�2 ranging from 0.04
to 38.44 was added to training sets. The dashed lines show the error level predicted by Theorem
B.2. (b) Nonlinear target function and nonlinear learning model—the residual error is shown for a
nonlinear target function trained using a 2-3-1 network. Gaussian noise with�2 ranging from 0.25 to
6.25 was added to training sets. The results correspond very closely to those predicted by Theorem
III.2 whenC1 = 20 (shown with dashed lines). (c) The behavior of the expected test error with no
noise for the learning scenario in (a). We observe that for even smallN there is close agreement
between the theoretical1=N decrease. (d) The behavior of the expected test error with no noise for
the nonlinear learning scenario in (b). Once again for smallN we observe the expected behavior.

linear model was used to learn the future price as a function
of the close price of the previous five days.

We performed the following experiments. The last 1000
data points of each time series were held out as a test set.
The remaining points were used to create a data set

points were sampled from this set and used to learn.
This was repeated to obtain an estimate of the expected
test and training error. We show the dependence of the
expected test error on the number of training examples in
Fig. 6. Though it is not obvious that the assumptions made
to derive the results hold, as with the results on artificial
data, the test error seems to not only obey the bound of (5),
but it assumes quickly behavior. Assuming the bounds

to be tight for both the test error and training error, we are
able to estimate the best possible performance of the linear
model by finding the line best fitting as a function
of . Table 1 summarizes these estimates.

We compare the model limitation to that of simply
predicting the present value as the next value. We find
that this simple strategy virtually attains the model lim-
itation suggesting that today’s price completely reflects
tomorrow’s price—which is the best we can expect to
achieve systematically. The results in Table 1 are appealing
on two accounts. First, assuming that today’s price is
the best predictor of tomorrow’s price, the technique we
use to predict the model limitation is performing well.
Second, because the model limitation estimates are slightly
below the error of the simple strategy, we deduce that
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Fig. 6. The dependence of the test error-E0 on N is depicted for the British pound (STG), the
Swiss franc (CHF), the Japanese yen (JPY), and the German mark (DEM). Also shown are two
lines that show1=N behavior. We see that the test error curves follow the theory well.

Table 1 Estimate Of Model Limitation and
Comparison to Simple Predictor2

(a)

(b)

there is some information that can be extracted from
previous prices.

By training on different time periods, we find that the
model limitation may change. If we assume the underlying
dependence to have remained constant so thathas not

2In (a) we use the training error to estimateE0 + �2 and compare
to the performance on the training set when we use the simple system
“predict no change in price.” In (b) we use the test error curve to estimate
E0. Only (a) is possible in practice, but both yield very good estimates
(if we assume that this simple strategy is close to the best you can do),
thus verifying that the results of Section III can be applied to this learning
problem. The change in the estimate from (a) to (b) is due to the fact that
the test and training sets are taken from different time intervals, and hence
the estimates reflect a change in the market volatility over time.

changed, then the resulting change can only be due to a
change in , thus providing an estimate of the change in
the volatility [since the volatility is related to the change in

(1)]. It appears from Table 1 that of the four currencies,
the STG’s volatility seems to have increased while the
remaining three markets display decreasing volatility.

We see that the results of Section III apply to the problem
of financial forecasting. Experiment bears out the fact that
the answers to the questions posed in Section II lie in the
expressions for and in (5) and (8).

V. CONCLUSION

The new results in Section II are represented in Theorem
III.2. The experimental results on artificial data amply
support the theory. We have shown that the number of
noisy examples required for comparable generalization with

noiseless examples increases as. Explicitly, the main
result bounds the test error for a noisy data set by

. We also obtained a result
that bounds the expected test error relative to a benchmark
test error (5). Experimentally we showed that this result
applies to the nonasymptotic regime—the empirical results
show that the bounds hold with almost equality for as
small as 20. Intuitively, this is because the nonasymptotic
effects that affect also have a similar effect on

.
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We began with the goal of answering two questions (ini-
tially posed in the context of financial time series): relative
to a benchmark scenario (that of learning with no noise),
how does the performance change as the noise and number
of examples changes? This dependence is represented by
the expression for above. This expression is a similar
result to those derived by Amari in [9] and Moody in [11].
However, the differences are significant. Amari compares
the training error when descending on a given error function
to the expectation of that error when you have finished
learning. The learning algorithm is specific but the form of
the error function may vary. Moody considers minimization
of an error term plus a complexity term and assumes that the
input distribution is a sum of delta functions at the training
data points. In this paper, we derive a convergence result
for the expected squared error without severely restricting
the learning algorithm or the input distribution. The results
were presented in the context of financial time series
analysis, but we note that they are applicable to the general
learning problem, independent of most of the details of
the learning model and learning algorithm. In particular,
we do not require the learning algorithm to minimize a
simple training error measure—optimizing a generalized
regularized training error (as in [12]) should produce an
algorithm that still satisfies the conditions of Theorem III.2.

We provided an estimate of the model limitation which
we used to estimate the best possible performance when
learning in the FX markets. The results were consistent with
the assumption that today’s price reflects all the information
about tomorrow’s price. Using this method for predicting
the model limitation, we could detect changes in the market
volatility, which is of economic use.

It would be useful to explore the relationship between
the constants that parameterize the expected
test error dependence.

APPENDIX I
DEFINITIONS

One expects that if one has “close” data sets
and where is

small, then should be “close” to . For to
have this property, should be able to implement the two
“close” functions.3 We formalize this notion by defining the
class of learning systems that areth order—continuously
compatible with respect to the probability measure

. We will use the following notation. Let be the
compact support for and let . Let

be any two data
sets on such that . Let

.
Definition A.1: is th order—continuously compatible

if such that

with probability one (i.e., for almost every ). We will
write .

3These conditions will often be satisfied in practice.

We would like to be “unbiased” in the following sense.
If we have a data set with and we add
independent, zero mean noise to the targets to get a new
data set , then we would like , where
this average of functions is taken pointwise. This motivates
the following definition.

Definition A.2: Let and be two data sets related by
, where the ’s are independent and zero mean.

Then is mean preserving or unbiased if
with probability 1 (i.e. for almost every ).

Definition A.3: A learning system is stableif it is in
and it is mean preserving.

APPENDIX II
PROOFS OFRESULTS

Proposition B.1: If , then for
.

Proof: By Jensen’s inequality,
for . Letting , as in Definition
A.1, and for , the proposition now follows
because .

We use the notation

The law of large numbers gives us that
and . where we assume that

the conditions for this to happen are satisfied.
Theorem B.2:Let , the learning model, be the set of

linear functions , and let the learning algorithm
be minimization of the squared error. Then

(11)

(12)

where and is a constant depen-
dent on the input distribution. It follows that

.
Proof: . The least squares

estimate of is given by

(13)

from which we calculate

where we have used (1) and . By the law of
large numbers, we note that and
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, so we write

(14)

where and and are
. Using (14) and the identity

we have

From the definition of we find from the first term

by taking the expectation of the trace of both sides of the
equation, the second term can be shown to be of the same
order as the third term. So

(15)

The first part of the theorem now follows. Using similar
techniques for , we find

with and depending on the input
distribution. This gives the dependence of . Finally
we have

yielding the functional dependence .
This result can immediately be generalized to the case

where the learning model is linear in its parameter space.
A similar technique can be used to derive a result on the
expected mean squared residual itself which we will call

.

Theorem B.3:Let , the learning model, be the set of
linear functions , and let the learning algorithm
be minimization of the squared error. Then

(16)

(17)

where and are the same constants appearing in
Theorem B.2. Thus we find

(18)

Proof: The residual error is given by

from which the first part of the theorem follows. Using the
techniques of Theorem B.2 we find that

Comparing with Theorem B.2 we have the second part of
the theorem.

This result is similar to the results obtained by [9], [11].
We now consider the case of a nonlinear learning model.

The following proposition shows that
is well defined pointwise—i.e., such that

if then . This can be
skipped if this fact is self evident or if one wishes to assume
convergence and one is merely interested in the rate. It is
included here purely for technical completeness.

Proposition B.4: Let . Then, the limit
for noiseless data sets is well defined

pointwise on sets of nonzero probability—i.e.,
such that if , then .

Proof: We will sketch the idea of the proof, the details
can be filled in using exactly the same techniques as for
the Proof to Theorem B.9. First we show that for any
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two infinite data sets, the learned functions are essentially
identical. For any infinite data set, as the input support is
compact (closed and bounded), any infinitesimal volume of
nonzero probability has an infinite number of data points.
Consider two such data sets. The means of the targets in this
small volume will be equal (by the law of large numbers).
Because the target function is continuous on this compact
support, the means for the two data sets are arbitrarily close
to the true values for each data set (this can be attained
by letting the size of the volume be arbitrarily small). By
continuous compatibility, these two data sets must both be
mapped arbitrarily close to the data set with the means as
targets. Therefore they must be mapped arbitrarily close
to each other. Thus, we see that is less than

for arbitrary small where the two different data sets
drawn from the input distribution are mapped to. So
we conclude that , therefore
with probability one. Thus, any two infinite noiseless data
sets are mapped to the same function (as the functions are
continuous), which we call .

Finally, consider a data set . For large enough, this
data set can be made arbitrarily close to an infinite data set
using the argument above. Let . Therefore

can be made arbitrarily small by choosing
large enough. In other words, ,
therefore converges to with probability one. Further,
because the functions are continuous and the support is
compact, this convergence is uniform.

We have just shown that the limit exists as
. Thus, with noiseless data sets, we have convergence for

stable learning systems. We now consider both the rate of
convergence and what happens when noise is added.

Theorem B.5:Let be stable. Let the target function
be continuous. Let the probability measure on the input
space have compact support. Then
such that using , it is at least possible to attain a test error
bounded by

(19)

Corollary B.6: If , then

(20)

Corollary B.7: , in-
dependent of .

Proof: By rescaling, we can assume that the input space
. is continuous, so it is uniformly

continuous on the compact set. Therefore, such that

Divide into intervals of size . Thus we divide
into cubes. Let define the

cube with lowest coordinates. Let be the number of

data points in , and let . Let
. We only need consider regions where

, as regions with are “don’t care” regions.
The following Lemma is easily obtained by noting that for

.
Lemma B.8: Let

Construct a new data set by replacing all the’s in
by , i.e., with no noise the targets would be , and
with noise they are .

where and
. We have that and .

Let map the noiseless data set to and this noisy
version of the data set to . So for the test error
we have

We now examine and .

where (a) and (b) follow from the mean preserving assump-
tion. (c) from continuous compatibility and (d) because we
assume the limit to exist pointwise. Similarly, for
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we get

(a) follows from the continuous compatibility assumption.
(b) follows because the noise is chosen independently of the
inputs. Choosing such that we have

We note that it is easy to extend these theorems to the case
where the noise variances are drawn from some distribution.
By taking the expectation over that distribution, the same
result with being the expected value of the variance
parameter is obtained. Note also that the preceding proof
is by no means suggesting a method to calculate. It
is simply a means to show its existence. Often, especially
when the input distribution is bounded, Corollary B.6 will
hold, and it might be possible to estimate these constants
experimentally.

One might wonder what would happen if the mean pre-
serving assumption is violated. We note that the only place
where this is used is in the evaluation of. Continuity
could still be used, however the difference being that a
term of order would remain. In other words, one
would have higher order.
So if we do not have the mean preserving property, then
these methods do not guarantee convergence of the
test error. Using identical methods, one can, however, get
the following result using the continuity property alone:

. This is very similar
to Theorem B.5 where one measures test error by the
expectation of the magnitude difference as opposed to the
squared difference.

We now derive a theorem on the dependence of .
Theorem B.9:Let be stable. Let the target function

be continuous. Let the probability measure on the input

space have compact support. Then such
that using it is at least possible to attain a noiseless test
error bounded by

(21)

Corollary B.10: If then
where .

Before we proceed to the proof of the theorem, the
following lemma is needed.

Lemma B.11:Let balls be independently be dis-
tributed into cells according to the probabilities .
Then for every such that the probability
that at least one cell is empty is bounded by

Proof:

cell is empty

cell is empty

choosing , where .

Proof of Theorem B.9:Let be
as in the proof of Theorem B.2. We only consider those
cubes with .

Suppose that we have an infinite noiseless data set,.
For all , let and let
if is nonempty, else . Construct two data sets
from the infinite one, and , by replacing all the ’s
in by , and respectively. does not depend on

and can be obtained from . and are
close data sets because for

Therefore, by continuous compatibility
. Define by . Then for

all nonempty . Let and be
and , respectively. Since we can construct, using

we can at least obtain a test error given by

By the mean preserving property, .
Therefore
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Similar reasoning shows that .
Let be the probability that at least one cell is empty. For
the final term we have

where . (a) follows by continuous
compatibility because with probability the data sets
are at most apart and , and with
probability they are at most apart. (b) follows
because , and Lemma B.11
can be used to yield . Finally we have

Choosing small enough, we have the theorem because
is bounded on the compact support.
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