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Learning from hints is a generalization of learning from examples that 
allows for a variety of information about the unknown function to be 
used in the learning process. In this paper, we use the VC dimension, 
an established tool for analyzing learning from examples, to analyze 
learning from hints. In particular, we show how the VC dimension is 
affected by the introduction of a hint. We also derive a new quantity 
that defines a VC dimension for the hint itself. This quantity is used 
to estimate the number of examples needed to "absorb" the hint. We 
carry out the analysis for two types of hints, invariances and catalysts. 
We also describe how the same method can be applied to other types 
of hints. 

1 Introduction 

Learning from examples deals with an unknown function f that is repre- 
sented by examples to the learning process. The process uses the exam- 
ples to infer an approximate implementation off.  Learning from hints 
(Abu-Mostafa 1990) generalizes the situation by allowing other informa- 
tion that we may know about f to be used in the learning process. Such 
information may include invariance properties, symmetries, correlated 
functions (Suddarth and Holden 19911, explicit rules (Win and Giles 
1992), minimum-distance properties (Al-Mashouq and Reed 1991 ), or any 
other fact about f that narrows down the search. In many practical situa- 
tions, we do have some prior information about f, and the proper use of 
this information (instead of just using "blind examples off)  can make 
the difference between feasible and prohibitive learning. 

In this paper, we develop a theoretical analysis of learning from hints. 
The analysis is based on the VC dimension (Blumer et al. 19891, which is 
an established tool for analyzing learning from examples. Simply stated, 
the VC dimension VC(G) furnishes an upper bound for the number of 
examples needed by a learning process that starts with a set of hypotheses 
G about what f may be. The examples guide the search for a hypothesis 
g E G that is a good replica off. 

Since f is unknown to begin with, we start with a relatively big set of 
hypotheses G to maximize our chances of finding a good approximation 
off among them. However, the larger G is, the more examples off we 
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need to pinpoint the good hypothesis. This is reflected in a bigger value 
of VC(G) .  How do we make G smaller without the risk of losing good 
approximations off? This is where the hints come in. Since a hint is a 
known property of f, we can use it as a litmus test to weed out bad gs 
thus shrinking G without losing good hypotheses. The main result of 
this paper is the application of the VC dimension to hints in two forms. 

1. The VC dimension provides an estimate for the number of examples 
needed to learn f .  When a hint H is given about f ,  the number of 
examples off can be reduced. This is reflected in a smaller “VC 
dimension given the hint’’ VC(G I H). 

2. If H itself is represented to the learning process by a set of examples, 
we would like to estimate how many examples are needed to absorb 
the hint. This calls for a generalization of the VC dimension to cover 
examples of the hint as well as examples of the function, which is 
reflected in a “VC dimension for the hint” VC(G;H) .  

We will study two types of hints in particular, invariances and cat- 
alysts. We will discuss how the same framework can be used to study 
other types of hints. 

A detailed account of the VC dimension can be found in (Blumer et 
al. (1989) and Vapnik and Chervonenkis (1971). We will provide a brief 
background here to make the paper self-contained. The setup for learn- 
ing from examples consists of an environment X and an unknown function 
f : X ---t (0 , l )  that we wish to learn. The goal is to produce a hypothesis 
g : X -, (0,l) that approximates f .  To do this, the learning process starts 
with a set of hypotheses G and tries to select a good g E G based on 
a number of examples [ x l , f ( x l ) ]  ; . . . ; [xN,f(xN)] off.  To generate the 
examples, we assume that there is a probability distribution P ( x )  on the 
environment X. Each example is picked independently according to P ( x ) .  
The hypothesis g that results from the learning process is considered a 
good approximation off if the probability [wxt. P(x) l  that g ( x )  # f ( x )  
is small. The learning process should have a high probability of produc- 
ing a good approximation off when a sufficient number of examples is 
provided. The VC dimension helps determine what is “sufficient.” 

Here is how it works. Let rg = Pr[g(x) = f ( x ) ] ,  where Pr[.] denotes the 
probability of an event. We wish to pick a hypothesis g that has rg x 1. 
However, f is unknown and thus we do not know the values of these 
probabilities. Since f is represented by examples, we can compute the 
frequency of agreement between each g and f on the examples and base 
our choice of g on the frequencies instead of the actual probabilities. Let 
hypothesis g agree with f on a fraction vg of the examples. We pick a 
hypothesis that has vg M 1. The VC inequality asserts that the values of 
vgs will be close to rgs. Specifically, 
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where “sup” denotes the supremum, and rn is the growth function of G. 
m(N) is the maximum number of different binary vectors g(x1) . - . g ( x ~ )  
that can be generated by varying g over G while keeping XI, . . . , XN E X 
fixed. Clearly, m(N) 5 2N for all N. The VC dimension VC(G)  is defined 
as the smallest N for which m(N) < 2N. We assume that G has a finite 
VC dimension. If VC(G) = d, the growth function m(N) can be bounded 
bY 

When this estimate is substituted in the VC inequality, the right-hand 
side of the inequality becomes arbitrarily small for sufficiently large N. 
This means that it is almost certain that each vg is approximately the same 
as the corresponding 7rg. This is the rationale for considering N examples 
sufficient to learn f .  We can afford to base our choice of hypothesis on vg 
as calculated from the examples, because it is approximately the same as 
7rg. How large N needs to be to achieve a certain degree of approximation 
is affected by the value of the VC dimension. 

In this paper, we assume that f E G. This means that G is power- 
ful enough to implement f .  We also assume that f strictly satisfies the 
hint H. This means that f will not be excluded as a result of taking H 
into consideration. Finally, we assume that everything that needs to be 
measurable will be measurable. 

2 Invariance Hints 

It is often the case that we know an invariance property of an other- 
wise unknown function. For example, speaker identification based on a 
speech waveform is invariant under time shift of the waveform. Prop- 
erties such as shift invariance and scale invariance are commonplace in 
pattern recognition, and dozens of methods have been developed to take 
advantage of them (e.g., Hu 1969). Invariances have also been used in 
neural networks, for example, group invariance of functions (Minsky and 
Papert 1988) and the use of invariances in backpropagation (Abu-Mostafa 
1 990). 

An invariance hint H can be formalized by the partition 

x=ux,  
(2 

of the environment X into the invariance classes X,, where a is an index. 
Within each class X,, the value off is constant. In other words, x ,  x‘ E X, 
implies that f ( x )  = f (x ‘ )  . 

Some invariance hints are “strong” and others are “weak,“ and this is 
reflected in the partition X = U, X,. The finer the partition, the weaker 
the hint. For instance, if each X, contains a single point, the hint is 
extremely weak (actually useless) since the information that x,x ‘  E X, 
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implies that f ( x )  = f ( x ' )  tells us nothing new as x and x' are the same 
point in this case. On the other extreme, if there is a single X, that 
contains all the points (X, = X), the hint is extremely strong as it forces 
f to be constant over X (either f = 1 or f = 0). Practical hints, such as 
scale invariance and shift invariance, lie between these two extremes. 

In what follows, we will apply the VC dimension to an invariance 
hint H. We will start by assessing the impact of H on the original VC 
dimension. We will then focus on representing H by examples and ad- 
dress what an example of H is, how to define a VC dimension for H, 
and what it means to approximate H. Finally, we will discuss relations 
between different VC dimensions. 

2.1 How the Hint Affects VC(G). The VC dimension is used to esti- 
mate the number of examples needed to learn an unknown function f .  It 
is intuitive that, with the benefit of a hint about f, we should need fewer 
examples. To formalize this intuition, let the invariance hint H be given 
by the partition X = U, X,. Each hypothesis g E G either satisfies H or 
else does not satisfy it. Satisfying H means that whenever x,  x' E X,, then 
g ( x )  = g(x'). The set of hypotheses that satisfy H is G 

G =  {g E G I x,X' EX, + - g ( x )  = g ( x ' ) }  

G is a set of hypotheses and, as such, has a VC dimension of its own. 
This is the basis for defining the VC dimension of G given H 

VC(G 1 H )  = VC(G) 

Since G C_ G, it follows that VC(G I H) 5 VC(G). Nontrivial hints lead to 
a significant reduction from G to G, resulting in VC(G [ H) < VC(G). On 
the other hand, some hints may have VC(G I H) = VC(G). For instance, 
in the case of the weak hint we talked about, every g trivially satisfies 
the hint, hence G = G. 

VC(G 1 H )  replaces VC(G) following the "absorption" of the hint. 
Without the hint, VC(G) provides an estimate for the number of examples 
needed to learn f .  With the hint, VC(G 1 H) provides a new estimate 
for the number of examples. This estimate is valid regardless of the 
mechanism for absorbing the hint, as long as it is completely absorbed. 
If, however, the hint is only partially absorbed (which means that some gs 
that do not strictly satisfy the invariance are still allowed), the effective 
VC dimension lies between VC(G) and VC(G I H). 

2.2 Representing the Hint by Examples. What is an example of an 
invariance hint? If we take the hint specified by X = U, X,, an example 
would be " f ( x )  = f(x')," where x and x' belong to the same invariance 
class. In other words, an example is a pair ( x , x ' )  that belong to the 
same X,. 
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The motivation for representing a hint by examples is twofold. The 
hint needs to be incorporated in what is already a learning-from-examples 
process. The example f ( x )  = f (x ' )  can be directly included in descent 
methods such as backpropagation along with examples of the function 
itself. To do this, the quantity [g(x)  - g(x')I2 is minimized the same way 
[g(x)  - f ( x ) l Z  is minimized when we use an example off .  In addition, 
we may represent a hint by examples if it cannot be easily expressed as 
a global mathematical constraint. For instance, invariance under elastic 
deformation of images does not readily yield an obvious constraint on 
the weights of a feedforward network. 

In contrast to the function f that is represented by a controlled number of 
examples and is otherwise unknown,a hint can be represented by as many examples 
as we wish, since it is a known property and hence can be used indefinitely to 
generate examples. 

Examples of the hint, like examples of the function, are generated 
according to a probability distribution. One way to generate ( x , x ' )  is 
to pick x from X according to the probability distribution P ( x ) ,  then 
pick x' from X, (the invariance class that contains x )  according to the 
conditional probability distribution P(x' 1 Xa). A sequence of N (pairs 
of) examples (XI, x:);  (XZ, 2');. . . ; ( X N ,  YN) would be generated in the same 
way, independently from pair to pair. 

2.3 A VC Dimension for the Hint. As we discussed in the introduc- 
tion, the VC inequality is used to estimate how well f is learned. We 
wish to use the same inequality to estimate how well H is absorbed. To 
do this, we transform the situation from hints to functions. This calls for 
definitions of new X, P, G, and f. 

Let H be the invariance hint X = U,X,. The new environment is 
defined by 

x = u x ;  
a 

(pairs of points coming from the same invariance class) with the proba- 
bility distribution described above 

P ( x ,  2) = P(x)P(x'  1 X,) 

where X, is the class that contains x (hence contains x').  The new set of 
hypotheses G, defined on the environment X, contains a hypothesis g for 
every hypothesis g E G such that 

and the function to be "learned" is 

f(x,x') = 1 
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The VC dimension of the set of hypotheses G is the basis for defining 
a VC dimension for the hint. 

VC( G; H )  = VC( G) 
VC(G;H) depends on both G and H since G is based on G and the new 
environment X (which in turn depends on HI. 

2.4 Approximation of the Hint. If the above learning process re- 
sulted in the hypothesis g = f (the constant 11, the corresponding g E G 
would obviously satisfy the hint. Learning from examples, however, 
results only in g that approximates f well (with high probability). The 
approximation is in terms of the distribution P(x, x') used to generate the 
examples. Thus, w.r.t. to P, Pr[g(x,x') # 11 --f 0 as the number of exam- 
ples N becomes large. Can we translate this statement into a similar one 
based only on the original distribution P(x)? To do this, we need to rid 
the statement of x'. Let 

P r W  # g(x')l = 7 
By definition of g, Pr[g(x,x') # 11 is the same as Pr[g(x) # g(x')] .  This 
implies that y 0 as N + 00. In words, if we pick x and x' at ran- 
dom according to P(x,x'), the probability that our hypothesis will have 
different values on these two points is small. 

To get rid of x' from this statement, we introduce hint-satisfying ver- 
sions of the gs. For each g E G, let g be the best approximation of g that 
strictly satisfies the hint. This means that, within each invariance class 
X,, g(x) is constant and its value is the more probable of the two values 
of g(x) within X, (ties are broken either way). We will argue that 

Since y + 0, this statement [which is solely based on P ( x ) ]  implies that 
"g approximately satisfies the hint" in a more natural way. 

Here is the argument. Let q be the probability that g(x)  # g(x). Given 
X,, let +, be the conditional probability that g(x) # g ( x ) ,  and let ya be 
the conditional probability that g(x) # g(x'). From the definition of g, q, 
must be I 1 (otherwise, the value of g in X, should be flipped). Within 
each X,, since g is constant, g(x) # g(x') if, and only if, g agrees with g 
on either x or x' and disagrees on the other. This means that 

P r W  # g(4l I Y 

Ya = 2%(1 -%) 
2 ?a 

(since 1 - q, 2 f). This is true for every class X,. Averaging over a, we 
get y 2 9, hence 

Prk(x) #Wl = 3 
5 7  
4 0  

This establishes the more natural notion of approximating the hint. 
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2.5 A Bound on VC(G;H). As in the case of the set G and its growth 
function m ( N ) ,  the VC dimension VC(G;H)  = V C ( G )  is defined based on 
the growth function m(N) of the set G. m(N) is the maximum number 
of patterns of 1s and 0s that can be obtained by applying the g’s to (fixed 
but arbitrary) N examples (x,, x i ) ;  (XZ, x i ) ; .  . . ; ( X N ,  xh ) .  VC(G;  H )  is the 
smallest N for which m(N) < 2N. 

The value of VC(G;H)  will differ from hint to hint. Consider our two 
extreme examples of weak and strong hints. The weak hint has VC(G;  H )  
as small as 1 since each g always agrees with each example of the hint 
[hence every g is the constant 1, and m(N) = 1 for all NI. The strong 
hint has V C ( G ; H )  as large as it can be. How large is that? In Fyfe (19921, 
it is shown that for any invariance hint H,  

VC(G;H)  < X V C ( G )  

where X = 4.54. The argument goes as follows. For each pattern gener- 
ated by the g’s on 

there is at most one distinct pattern generated by the g’s on 
x1, x{i x2i x;i . . . 9 XN, 

(XI 1 4  1; (x2,d);. . ‘ ; (XN, xk) 

m(N) 5 m(2N) 

because g ( X n 1  xb) is uniquely determined by g ( x n )  and g(x‘,). Therefore, 

If V C ( G )  = d, we can use Chernoff bounds (Feller 1968) to estimate m(2N) 
for N 2 d as follows 

< 2U(d/Wx2N - 

where X ( 8 )  = -0 log, B - (1 - 0 )  log,( 1 - 6 )  is the binary entropy function. 
Therefore, once X(dI2N) 5 i t  m(N) will be less than 2N and N must 
have reached, or exceeded, the VC dimension of G. This happens at 
N l d  x 4.54. 

In many cases, the relationship between VC(G I H )  and VC(G;H)  can 
be roughly stated as follows: the smaller one is, the bigger the other 
is. Strong hints generally result in a small value of VC(G I H) and a 
large value of V C ( G ; H ) ,  while weak hints result in the opposite situation 
[the loose similarity with the average mutual information I(X;Y) and 
the conditional entropy H(X 1 Y) in information theory is the reason for 
choosing this notation for the various VC dimensions]. 

This relationship between VC(G I H )  and V C ( G ; H )  may suggest that 
we do not save when we use examples of a hint and, as a result, use fewer 
examples of the function. However, it should be noted that examples of 
the hint can be generated at will, while examples of the function may be 
limited in number or expensive to generate. 
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3 Catalyst Hints 

Catalyst hints (Suddarth and Holden 1991) were introduced as a means 
of improving the learning behavior of feedfonvard networks. The idea 
is illustrated in Figure 1. A network attempting to learn the function 
g = f is augmented by a catalyst neuron out of the last hidden layer. 
This neuron is trained to learn a related function g' = f'. In doing so, the 
hidden layers of the network are influenced in a way that helps the main 
learning task g = f .  After the learning phase is completed, the catalyst 
neuron is removed. 

The catalyst function f' is typically a "well-behaved version" of f 
that can be learned more easily and more quickly. When f' is learned, 
the internal representations in the hidden layers of the network will be 
suited for the implementation of the main function f .  

As a hint, namely a piece of information about fl the catalyst is the 
assertion that there is a way to set the weights of the network that si- 
multaneously implements g = f and g' = f'. Unlike invariances, catalysts 
are very particular to the network we use. 

To formalize the catalyst hint, let 0 be the set of pairs of hypotheses 
(g,g') that can be simultaneously implemented by the network (when 
the catalyst neuron is present). The values of the weights in the different 

Figure 1: A network that uses a catalyst hint. 
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layers of the network determine (g,g‘). A particular g may appear in 
different pairs (8, g‘) and, similarly, a particular g‘ may appear in different 
pairs (g,g‘). Since the catalyst hint puts a condition on g‘, its impact on 
g is indirect through these pairings of (g,g‘). 

This suggests the following notation: (g, 8’) denotes the hypothesis g 
when the catalyst hypothesis is g‘ and (g,g’) denotes the hypothesis g‘ 
when the main hypothesis is g. Applied to a point x E X, we use the 
convention 

(g,gO(x) = g(x) 
(g ,g ’ ) (x )  = g’(4 

Thus (g,g‘) and (g, 8’) provide an inflated notation for the hypotheses g 
and g‘, respectively. In these terms, the set of hypotheses G is defined by 

G = {(g,g’) I (g,g’) E 8) 
To apply the VC dimension to catalyst hints, we will follow the same 

steps we used for invariance hints. The catalyst hint H is given by the 
constraint g‘ = f’. When H is absorbed, G is reduced to G 

Obviously, G E G. The VC dimension of G given H is 

VC(G I H )  = VC(G) 

Again, VC(G I H) 5 VC(G). How small VC(G I H) will be depends on 
the catalyst function f’. For instance, the degenerate case of a constant f’ 
results in VC(G I H) = VC(G) since the constant can be implemented by 
the catalyst neuron alone and would not impose any constraint on the 
weights of the original network. On the other hand, a complex f’ will 
take specific combinations of weights to implement, thus significantly 
restricting the network and resulting in VC(G I H) VC(G). If the hint 
is only partially absorbed, the effective VC dimension lies between VC(G) 
and VC(G I H). 

One situation that leads to partial absorption is when the hint is rep- 
resented by examples. An example of the hint H: g‘ = f’ takes the form 
g’(x) = f ’ (x ) .  In this case, examples of H are of the same nature as ex- 
amples off; x is picked from X according to P ( x )  and f ’ ( x )  is evaluated. 
The definition of examples of H leads to the definition of G, the set of 
agreement/disagreement patterns between the hypotheses and the hint. 
For each hypothesis (g,g’) E G, there is a hypothesis g E G such that 
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The VC dimension of G is the basis for defining VC(G;H),  the VC di- 
mension that will indicate how many examples [x , f ’ (x ) ]  are needed to 
absorb H. It is given by 

VC(G;H) = V C ( G )  

Unlike an invariance hint, the particular choice of a catalyst hint (the 
function f ’ )  does not affect the value of VC(G; H). 

The VC inequality asserts that a sufficient number of examples will 
lead to a hypothesis (g,g‘) that satisfies 

W(g, g W )  # fW1 + 0 

where the probability is taken wxt. P ( x ) .  Therefore, we will get a hy- 
pothesis g that pairs up with a good approximation off’. This establishes 
a natural notion of approximating the hint. 

4 Conclusion 

We have analyzed two different types of hints, invariances and catalysts. 
The highlight of the analysis is the definition of VC(G I H )  and VC(G;H). 
These two quantities extend the VC inequality to cover learning f given 
the hint, and learning the hint itself. 

Other types of hints can be quite different from invariances and cata- 
lysts, and will require new analysis. However, the common method for 
dealing with any type of hint in this framework is as follows. 

1. The definition of the hint should determine for each hypothesis in 
G whether or not it satisfies the hint. The set G contains those 
hypotheses which do satisfy the hint. VC(G 1 H) is defined as 

2. A scheme for representing the hint by examples should be selected. 
Each example is generated according to a probability distribution P 
that depends on the original distribution P. Different examples are 
generated independently according to the same distribution. 

3. For every hypothesis and every example of the hint, we should 
be able to determine whether or not the hypothesis agrees with 
the example. The agreement/disagreement patterns define the set 
of hypotheses G, and V C ( G )  defines VC(G;H).  A hypothesis will 
agree with every possible example if, and only if, it satisfies the 
hint. 

4. How well a hypothesis approximates the hint is measured by the 
probability (w.r.t. P) that it will agree with a new example. An 
approximation in this sense should imply a partial absorption of 
the hint. 

VC(G). 
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5. How the hint is represented by examples may not be unique. The 
choice of representation affects the definition of VC(G; H) and also 
affects what partial absorption means. A minimum consistency re- 
quirement is that no hypothesis that strictly satisfies the hint should 
be excluded as a result of the partial absorption process. A good 
process will exclude as many hypotheses as possible without vio- 
lating this requirement. 

Our analysis here dealt with the situation where the unknown func- 
tion f strictly satisfies the hint, and strictly belongs to G. Relaxing these 
conditions is worth further investigation. It is also worthwhile to ex- 
tend this work to cover real-valued functions, as well as average-case 
measures instead of the worst-case VC dimension. Finally, schedules for 
mixing examples off with examples of the hint in learning protocols are 
worth exploring. 
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