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In  ce lebra t ion  of  the  60 th b i r t h d a y  of Solomon W.  Go lomb  

A b s t r a c t - - I n  this paper, we consider the following question about Huffman coding, which is 
an important technique for compressing data from a discrete source. If p is the smallest source 
probability, how long, in terms of p, can the longest Huffman codeword be? We show that if p is 
in the range 0 < p <_ 1/2, and if K is the unique index such that 1/F/¢+3 < p < 1/FK+2, where 
FK denotes the K th Fibonacci number, then the longest Huffman codeword for a source whose least 
probability is p is at most K, and no better bound is possible. Asymptotically, this implies the 
surprising fact that for small values of p, a Huffman code's longest codeword can be as much as 
44% larger than that of the corresponding Shannon code. (~) 2000 Elsevier Science Ltd. All rights 
reserved. 

K e y w o r d s - - D a t a  compression, Huffman codes, Fibonacci numbers. 

1 .  I N T R O D U C T I O N  A N D  S U M M A R Y  

Huffman  coding  is op t ima l  (in the  sense of  minimiz ing  average codeword  length)  for any  d iscre te  

memory le s s  source,  and  Huffman codes are in widespread  use in d a t a  compress ion  app l ica t ions .  

In  m a n y  s i tua t ions ,  it  would  be  useful to  have an easy  way to e s t i m a t e  t he  longest  Huffman 

codeword  length  for a given source w i thou t  having to  go t h rough  Huffman ' s  a lgor i thm,  b u t  s ince 

t he re  is no known c losed-form express ion for t he  Huffman codeword  lengths,  no such e s t i m a t e  

i m m e d i a t e l y  suggests  itself. However,  since the  longest  codeword  will a lways  be a s soc ia t ed  wi th  

t he  leas t  p r o b a b l e  source symbol ,  one way to address  th is  p rob lem is to  ask the  following quest ion.  

I f  p is t he  smal les t  source probabi l i ty ,  how long, in t e rms  of  p, can the  longest  Huffman codeword  

be? I t  t u r n s  ou t  t h a t  th is  quant i ty ,  which we denote  by  L(p), is easy  to  ca lcula te ,  and  so L(p) 
provides  an "easy e s t ima te"  of the  longest  Huffman codeword  length.  

Our  fo rmula  for L(p) involves the  famous Fibonacci numbers (Fn)n>_O, which are  def ined re- 

curs ive ly  as follows: 

F 0 = 0 ,  F 1 = 1 ,  and  Fn=Fn_l+Fn_~, f o r n > _ 2 .  (1) 

Thus ,  we have F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, etc. The  F ibonacc i  numbers  and  the i r  

p rope r t i e s  a re  discussed in de ta i l  in [1, Sect ion 1.2.8]. Here is our  ma in  resul t .  (Note  t h a t  s ince 
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THEOREM 1. 

such that  

the definition of L(p) assumes p to be the smallest probability in a source, p must  lie in the range 
0 < p _< 1/2.) 

Let p be a probability in the range 0 < p _< 1/2, and let K be the unique index 

1 1 

FK+----~ < p <- FK+2" (2) 

Then L(p) = g .  Thus, p • (1/3, 1/2] implies L(p) = 1, p • (1/5, 1/3] implies L(p) = 2, 
p • (1/8, 1/5] implies L(p) = 3, etc. 

I t  is easy to prove by induction tha t  the Fibonacci numbers satisfy the following inequalities: 

¢,~-2 < Fn < Cn-X, for n > 3, 

where ¢ = (1 + v/5)/2 = 1.618. . .  

see tha t  

which in turn implies tha t  

(3) 

is the "golden ratio". If  we combine (3) with Theorem 1, we 

1 
log s - 2 < L ( p ) < l o g  s p ,  (4) 

lim L(p) - 1. (5) 
logA1/p ) 

Since log s x = (log 2 x) / ( log  2 ¢) = 1.44041og 2 x, (5) implies the surprising fact tha t  for small 
values of p, a Huffman code's longest codeword can be as much as 44% larger than  tha t  of the 
corresponding (in general, suboptimal)  Shannon code [2, Chapter  5], which assigns a symbol with 
probabil i ty p a codeword of length [log2(1/p)]. 

Theorem 1 is closely related to a result of Katona  and Nemetz [3], which identifies the length 
of the longest possible Huffman codeword for a source symbol of probabili ty p (whether or not p 

is the smallest source probability). Denote this quanti ty by L* (p), their result is as follows. 

THEOREM 2. (See [3].) Let p be a probability in the range 0 < p < 1, and let K be the unique 

index such that 
1 1 

- -  _< p < - - .  (6) 
FK+2 FK+I 

Then L*(p) = K.  Thus, p e [1/2,1) implies L*(p) = 1, p E [1/3, 1/2) implies L*(p) = 2, 
p e [ 1 / 5 , 1 / 3 )  impl ies  n* (p )  = 3, etc. 

Comparing Theorems 1 and 2, we see that  L*(p) = L(p) + 1 unless p is the reciprocal of a 
Fibonacci number, in which case L*(p) = L(p)J  

2. P R O O F  OF T H E O R E M  1 

The proof of Theorem 1 is in two parts. First, we will show tha t  if p > 1/FK+3, then in 

any Huffman code for a source whose smallest probabili ty is p, the longest codeword length is 

at most  K.  In fact, we will prove a considerably stronger result. We will define the class of 
efficient prefix codes, and observe that  any Huffman code, and in fact any optimal  code for a 
given source, is efficient. Then we will show that  i f p  > 1/FK+3, in any efficient code for a source 
whose smallest probabili ty is p, the longest codeword length is at most K .  In the second half of 
the proof, we will show tha t  if p <_ 1/FK+2, there exists a source whose smallest probabil i ty is p, 
which has at least one Huffman code whose longest word has length K.  As an extension, we will 
see tha t  if p < 1/FK+2, there exists a source whose smallest probabili ty is p, and for which every 
optimal  code has longest word of length K.  (If p = 1/FK+2, however, there is no such source.) 

aIn fact, however, if we were to make a subtle change in the definition of L(p), this special case would disappear. 
The change required is to define L(p) as the minimum maximum Huffman codeword length over all Huffman codes 
for a source with p as the least probability, where the outer minimum is over all Huffman codes for a given source. 
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We come now to the definition of efficient prefix codes, which is best stated in terms of the 
associated binary code tree (see Figure 1). Each source symbol and its corresponding codeword 
is associated with a unique terminal node on the tree. Also, each node in the tree is assigned a 
probability. The probability of a terminal node is defined to be the probability of the correspond- 
ing source symbol, and the probability of any other node of the code tree is defined to be the sum 
of the probabilities of its two "children". The level of the root node is defined to be zero, and 
the level of every other node is defined to be one more than the level of its parent. Two nodes 
descended from the same parent node are called siblings. Figure 1 shows two different code trees 
for the source [3/20, 3/20, 3/20, 3/20, 8/20]. The tree in Figure l a  corresponds to the prefix code 
{000, 001101, 10, 11}, and the tree in Figure lb  corresponds to {000,001,010,011, 1}. 

I i 

3 /20  3/2( '  3 /20  3/2(;3/2(:,  3 /20  

(a) (b) 

Figure i. Two code trees for the source [3/20, 3/20, 3/20, 3/20, 8/20]. The tree in (a) 
is efficient, but not optimal (average length = 2.3); the one in (b) is optimal (average 
length = 2.2). 

DEFINITION. A prefix code for a source S is efficient if every node except the root in the code 

tree has a sibling, and if  level(v) < level(v') implies p(v) >_ p(v'). 

Gallager [4] noted that  every Huffman tree is efficient, but in fact it is easy to see more 
generally that  every optimal tree is efficient. This is because in an inefficient tree, with nodes v 
and v' such that  level(v) < level(v') but  p(v) < p(v'), by interchanging the subtrees rooted at v 
and v', we arrive at a new code tree for the same source, whose average length has been reduced 
by exactly (level(v') - level(v))(p(v') - p ( v ) ) .  However, it is not true that  every efficient code 
is optimal, as shown in Figure 1, which shows two different efficient code trees for the source 
[3/20, 3/20, 3/20, 3/20, 8/20]. The code in Figure lb  is optimal, but  the one in Figure l a  is not. 

THEOREM 3. I f  p > 1/ FK +3, then in any efficient prefix code for a source whose/east  probability 
is p, the longest codeword length is at most K.  

PROOF. We will prove the contrapositive, i.e., if p is the least probability in a source which has 
an efficient prefix code whose longest word has length >_ K + 1, then p <_ 1/FK+3. 

Thus, we suppose that  S is a source whose least probability is p, and that  there is an efficient 
prefix code for S whose longest word is of length _> K + 1. In the code tree for this code, there 
must be a path of length K + I starting from the terminal node corresponding to the longest 
word and moving upwards toward the root. This path is shown in Figure 2, as the path whose 
probabilities are Po,Pl , . . .  ,PK+I. Since the code is assumed to be efficient, each of the vertices 
in this path (except possibly the top vertex) has a sibling; these siblings are shown in Figure 2, 
as having probabilities qo, q l , . . . ,  qK. Now we can prove the following: 

Pi >_ Fi+2p, for i = 0, 1 , . . . ,  K + 1. (7) 

We prove (7) by induction. For i = 0, (7) merely says that  100 _> P, which is true since P0 = P by 
definition. Also, note that  q0 >_ P since p is the least source probability. Thus, Pl -- Po + q0 >- 
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f 

P0 q0 

Figure 2. A portion of an efficient code tree, in which the longest codeword has 
length _> K + 1. P0 is the least source probability. 

p+p = 2p = F3p, which proves (7) for i = 1. For i _> 2, we havep i  = Pi-l+qi-1.  But  Pi-1 >_ Fi+lp 
by induct ion,  and  qi-1 >_ Pi-2 since the  code is efficient (qi-1 is a higher level node  t h a n  Pi-2). 
Thus ,  we have qi-1 _> Pi-2  _> Fip by induction,  and so Pi = Pi-1 + qi-1 >_ (Fi+l + Fi)p = Fi+2p, 
which comple tes  the  proof  of  (7). 

Now consider the  probabi l i ty  PK+I. On one hand,  we have PK+I <-- 1; but  on the  o ther  hand  

PK+I ~-- FK+aP, by (7). Combin ing  these  two inequalities, we have p <_ 1/FK+3, which comple tes  

the  proof.  | 

THEOREM 4. I f  p < 1IRK+2, there  exists a source whose smallest probability is p, and which 
has a Huffman code whose longest word has length K .  If  p < 1IRK+2, there  exists such a source 
for which every optimal code has a longest word of length K.  

PROOF. Consider  the  following set  of K + 1 source probabili t ies:  

[p F1 F2 FK-1 FK + I ] 
' F  ' f  " "  ' p . ( 8 )  g + 2  g + 2  " '  FK+2 FK+2 

Note  t h a t  p is the  min imal  probabi l i ty  for this source, since p < 1IRK+2 = F1/FK+2. Now 
consider the  code t ree  for this source depicted in Figure 3, which assigns the  source p robabi l i ty  p 

a word of length K .  This  t ree is in fact a Huf fman  tree for these probabil i t ies ,  i.e., a code t ree  

which arises when  Huf fman ' s  a lgor i thm is appl ied to  the  source (8). To see this,  we first prove 

t h a t  the  internal  ver tex  probabi l i t ies  Pi in Figure 3 are given by the  following formula:  

Fi+2 h, for i = 0, 1 , . . . ,  K - 1, (9) 
P i -  FK+2 

PK = 1, (10) 

where  h = 1/FK+2 --p. 
To prove (9), we use induction.  For i = 0, we have by definit ion Po = P = 1/FK+2 -- h = 

F2/FK+I - h. For i > 1, we then  have Pi = Pi-1 + FJFK+2 = (Fi+I/FK+I - h) + Fi/FK+2 = 
Fi+2/FK+2-h. To prove (10), we note  t h a t  pK = pK-I+(FK+I) /FK+2--p .  But  f rom (9) we have 

PK-1 ---- (FK+I/FK+2 -- h), so t ha t  PK = (FK+I/FK+2 -- h) + (FK/FK+ 2 -~ h) = FK+2/FK+2 = l. 
Thus ,  the  probabi l i t ies  in (8) sum to  one. 

I t  now follows t h a t  the  t ree  in Figure  3 is a Huf fman  tree,  for f rom (9) we see t h a t  a t  the  ith 
s tage (i = 0 , . . . ,  K - 1), the  "collapsed" source consists of  the  probabi l i t ies  

[ Fi+2 h, F i+l  Fi+2 FK-1 FK ] 
- - '  ' ' " ' F  ' - -  + h  (11) 

[FK+2 Fg+2 FK+2 g+2  FK+2 " 



Maximal Codeword Lengths 133 

PK 

PK- I / ~  (F K 

2W/~ K-I/ FK+ 2 

~ ~ F 2 / YK+2 pl 

P = P0 / \ F1 / FK+2 

+ i)/ F+2- I 

Figure 3. A Huffman code tree for the source in (8). Its smallest probability is p, 
where p <_ 1/FK+2, and its longest codeword length is K. 

Plainly, the two leftmost probabilities in (11), viz., Fi+2/FK+2 - h and Fi+I/FK+2, are two of 

the smallest probabilities, and so the tree of Figure 3 is a Huffman tree, as asserted. 

Finally, note tha t  if h > 0, i.e., if p < 1/FK+2, the leftmost two probabilities in (11) are 
uniquely the two smallest probabilities in the list, so that  the Huffman tree in Figure 3 is the 

unique Huffman tree for the source (8). And since the set of codeword lengths in any optimal  
code is the same as the set of lengths in some Huffman code, the last s ta tement  in Theorem 4 

follows. | 

I f  we combine Theorems 3 and 4, we get a result which is stronger than Theorem 1. 

EXAMPLE 1. Let p = 2 -8. Then l/F14 = 1/377 < p < 1/F13 = 1/233, and so by Theorem 1, 
L(2 - s )  = 11. More concretely, Theorem 3 shows that  no Huffman code for a source whose 
smallest probabili ty is 2 - s  can have a codeword whose length is longer than 11. By Theorem 4, 
on the other hand, every optimal code for the source 

[ 1 1 2 3 5 8 13 21 34 55 90 _2-s l  
2 - s '  233' 233' 233' 233' 233' 233' 233' 233' 233' 233' 233 

(12) 
[. A 

has a longest word of length 11. | 

3. E X T E N S I O N  OF T H E  K A T O N A - N E M E T Z  T H E O R E M  

In this section, we will s tate without proof two theorems which, taken together, yield a result 

which is slightly stronger than Katona and Nemetz 's  Theorem 2. The proofs are entirely similar 
to the proofs of Theorems 3 and 4. 

THEOREM 5. Let S be a source containing a symbol a whose probability is p. I f  p >_ 1/FK+2, 
then in any efficient prefix code for S, the length of the codeword assigned to the symbol  a is at 

most  K .  

THEOREM 6. Let p < 1/FK+I. Then there exists a source S containing a symbol a whose 

probal~lity is p, and such that every optimal code for S has assigned to a a codeword of  length K .  
Explicitly, one such source is given by 

S[FI + El F2 FK-I 1 ---- p -  e,p, , , . . . , - -  (13) 
1 FK+I FK+I FK~-I -~ 6 , 

where e is any real number such that 0 < e < 1/FK+I -- p. 

EXAMPLE 2. Let p = 2 - s .  Then 1/F14 = 1/377 < p < 1/F13 -- 1/233, and so by Theorem 2, 
L*(2 - s )  = 12. Indeed, by Theorem 6, every optimal code for the source 

[ 1 _ 2 _  s 1 1 2 3 5 8 13 21 34 55 89 ] _ _ ~  + e  
- e' 2 - s '  233' 233' 233' 233' 233' 233' 233' 233' 233' 233' 23 o , 

(14) 

where 0 < e < 1 /233 -1 /256 ,  assigns the symbol with probabili ty 2 - s  a codeword of length 12. | 
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