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ABSTRACT

In forecasting a financial time series, the mean prediction can be validated
by direct comparison with the value of the series. However, the volatility or
variance can only be validated by indirect means such as the likelihood
function. Systematic errors in volatility prediction have an ‘economic value’
since volatility is a tradable quantity (e.g. in options and other derivatives)
in addition to being a risk measure. We analyse the fidelity of the likelihood
function as a means of training (in sample) and validating (out of sample) a
volatility model. We report several cases where the likelihood function
leads to an erroneous model. We correct for this error by scaling the
volatility prediction using a predetermined factor that depends on the
number of data points. © 1998 John Wiley & Sons, Ltd.
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INTRODUCTION

Consider the time series depicted in Figure 1. Each point x(¢) is drawn from a distribution whose
mean is u(¢) and variance o2(¢). While we can only observe x(f), we wish to learn about the mean
w(?) and the volatility 6(¢) (a normalized version of o(¢)). An accurate prediction of the mean tells
us about the expected behaviour of the time series. An accurate prediction of the volatility is also
important, especially in the case of a financial time series. Typically, volatility prediction is used
as an explicit measure of risk in static hedging, portfolio selection and margining problems. It
serves to place an error bar on the predicted value.

The question arises as to how one can judge various models that are predicting a non-explicit
parameter like the variance. The variance falls into the class of non-explicit parameters because,
on drawing a random variable from its distribution, no direct information on the variance is
conveyed. Depending on the error measure one wishes to choose, the value of the random
variable gives direct information on the ‘central’ value—for example, it is the best estimate of the
mean using squared error or the best measure of the median using absolute error. For this reason
it is possible for a model to ‘learn’ the mean or median by ‘training’ on the actual value of the
random variable using one of these error functions. It we have more than one drawing from the
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Figure 1.

distribution then some direct information does exist on the variance but we would like to consider
time series with time-varying distributions, so we get only one drawing from each distribution. As
a result, one has to somehow infer information on the variance, and here lies the difficulty with
variance prediction. We discuss how this can be done using maximum likelihood, and we take the
special case of Gaussian noise to illustrate our points.

The most striking result in this paper is that, for any finite number of data points, it is more
likely than not that we will select the worse of two specific models if we use the likelihood function
to compare them. It turns out that maximum likelihood will lead to an underestimation of the
volatility, even when the mean is predicted perfectly. This naturally leads to the question ‘Can we
correct for the systematic underestimation?’ This allows us to choose from a class of models and
then correct for the bias in the method of selection.

Volatility factors into a number of equations in finance. Black and Scholes (1973) deprived
option pricing models for which the expected future volatility is an important input. Kat (1993)
has shown that more accurate volatility prediction will improve the replication efficiency of delta
hedging strategies using Black—Scholes hedge ratios, even if the volatility is not constant.
Crouchy and Galai (1995) show that for path independent options, the option value depends
only on the average volatility while the hedge ratio itself depends on the path of future volatility.
The sensitivity of the hedge ratio to short-term volatility (we are interested in time-varying
volatility) is more of a problem for short-term options than long-term ones. Nonetheless, this
sensitivity exists and so one would like to have an accurate estimate of the volatility.

We consider models that predict the mean and variance at time ¢ as in Figure 2. A variety of
techniques exist for predicting variance or volatility. One can use the option prices to compute

black box

It—At — . — 4, O
predictor

Figure 2.
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‘implied’ volatilities, such as those derived from the Black—Scholes pricing equations. Another
alternative is a multifactor model. Usually combinations of such models work best, but these
models all include some constancy in the volatility. Schewert (1989) tests for the constancy of the
volatility and strongly rejects this hypothesis. Thus one would like to have models that reasonably
account for changing volatility. One can modify the Black—Scholes equations if the volatility is
some known function of time by replacing the actual volatility by the average over the remaining
life of the option. Autoregressive Conditional Heteroscedasticity (ARCH) type models intro-
duced by Engle (1982) stipulate the conditional variance as a function of past innovations.
Generalizations of this are GARCH (Bollerslev, 1986) and EGARCH (Nelson, 1991) where the
conditional variance is a function of past innovations and variances. Hull and White (1987) have
tried models that have stochastic parts to them.

One would like to have a reliable method for choosing between volatility models. Our goal
is the selection of the optimal model given a number of models. Training can be viewed as a
generalization of this where one chooses from a class of models (e.g. neural networks with a
given architecture). We will evaluate maximum likelihood as a selection criterion between
models.

DEFINING THE VOLATILITY

Variability versus volatility

It is not clear what the causes of volatility are in the financial markets. Suggestions are that it may
be caused by the random arrival of information or by the nature of trading. Fama (1965) and
French (1980) have tested this issue empirically showing that it is likely to be a combination of
these two effects. Financial market indexes seem ‘too volatile’ in that movements seem to not be
attributable to any new objective information. It is important to distinguish how ‘jagged’ or
‘choppy’ a time series is from the volatility. One might refer more accurately to the former as the
variability. At any given time, if the mean value is known, the tendency of the actual value at that
time to wander about this mean value is related to the volatility. In the case where the mean and
the variance are constant, the variability will reflect the volatility. We are more concerned with
time-varying variance so this distinction should be made. A measure of this tendency for the
actual outcome to be scattered about the mean is the variance of the value at time 7. All that we
observe at time ¢ is an outcome from the distribution of the value from which we would like to
infer the variance (the standard definition of the volatility is a normalized version of the square
root of the variance). Thus we describe the time series by some underlying time-varying
distribution f{(x | 1,_ ,,) which is the conditional probability density for obtaining a value x at time
t given the information available at r — Az. We are interested in E/[x], a prediction for the
outcome and ¢> = Ef[(x — E/[x])z] a measure of the (squared) volatility. E, denotes expectation
with respect to f(x,1).

Correspondence with the Black—Scholes volatility models
In modelling the time variation of a stock price, Black and Scholes assume an Ito Process (Ito,
1951) of the form

dS = [iSdt + ¢Sevdr (1)
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e ~ N(0,1), S is the instrument price, ¢ is defined as the volatility and is the standard deviation of
the proportional change in the stock price in unit time. It is this ¢ that enters into the calculation
of the hedge ratios, option prices, etc.:

A—SS ~ N(iiAt, 6/ A1) 2)

or AS ~ N(SpAt, S6+/At). The model we have is that at time ¢ the probability density of S is
given by f(S'|/,_,,). In particular, I, _,, includes the information S, _,,. Hence, the Black—Scholes
model falls into this class of models:

S, ~ N(S,_,,(1 4 fiAt), GS, A1) (3)

The variance o2 is related to the volatility & by

o
G=— (4)
Sr—At\/—A_;

So to calculate option prices, hedge ratios, etc., according to the Black—Scholes prescription, it
suffices to know o2, the variance. With this consideration in mind, we now restrict our analysis to
the prediction of variance.

SETTING UP THE PROBLEM OF VARIANCE ESTIMATION

We start by introducing the notation that will be used throughout the paper:

an actual variance

a predicted variance

an actual mean

a predicted mean

data drawn from the actual distribution

N(u,0) = x has a Gaussian (normal) distribution with mean p and variance o> (%)

% [T A Q

Basic set-up

We will consider the case of noisy time series, financial series being a special case. The problem is
set up in the following way. Given the history of information (including the full history of values
of the time series), there exists some conditional probability distribution for the next value. We
label the time series variable x, then

f(x,11,_,,) = probability density function for x, the value of the series at time ¢ (6)

where I,_,, is the information available at time ¢ — Az. Usually, /,_,, is taken as the past few
values of the variable x. Ideally, we would like to know what f'is, but we will focus on the first two
moments of f, as the first moment is the best prediction of the value and the second is related to
the volatility. So we are interested in

tu(lth)‘) 'dnd O-(][fA[) (7)
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A model consists of a ‘black box’ that takes as input /, _,, and outputs {jt’, 6'}, predictions of the
mean and variance for time ¢ (Figure 2). A collection of models consists of a set of such pairs of
functions {fi!, 6/} ,. We will drop the ¢ superscript when the context is clear. The index i refers to
which model we are talking about. In this paper, we are not concerned with exactly what goes
into the black box of Figure 2. All we know is that we are given a set of models (e.g. GARCH,
neural networks, etc.) that take the input /,_,, and provide estimates of the mean and variance as

output.

Choosing between the models

In order to choose between the models, one requires some ‘validation’ data. Since our goal is to
predict the mean p and the variance 62, we would ideally be given n data points which consist of a
series of inputs and the actual values of the mean and variance corresponding to those inputs,
{I?_4,» 11*, 0*},_,. For each model i, one then compares its predictions {fi¥, 67} with the actual
values and then chooses that model that performed ‘best’ on the validation data. More formally,
one constructs an error measure for model i:

n

E =Y el it 5 i o)

a=1

and chooses the model yielding the lowest value for the error. ¢ is a measure of how bad a
prediction was on a given data point. The most familiar error measure is probably the squared
difference error

n

E, =Y [ (@ = )+ - o)) ®)

=1

Unfortunately one does not usually have access to the actual values of the mean and variance. All
one usually has are data points ({d,})_,) drawn from the distributions f(x, | I_,,). Based on the
data, one has to construct an error measure

n

E;=) oIl s 1. 6. d,)

oa=1

that evaluates the estimates i and ¢ without knowing the actual x and ¢. The goal is to evaluate
this error measure for the models and pick the model that minimizes the error. The question now
arises as to what kind of error measure to take.

Using maximum likelihood to choose between models

If we know the functional dependence of f(x,|/,_,,) on the parameters that we are trying to
predict, then after observing the data we can evaluate the likelihood that the data occurred under
the assumption that model 7 is correct. Given the likelihoods of the different models, we will
choose that model that has the highest likelihood

I(d | model i) = ]‘[ f(d, 11, )

a=1
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where we have assumed that the data have been drawn independently from their respective
distributions. The likelihood is the physically important quantity because it relates to a proba-
bility. A more mathematically useful quantity is the log(likelihood) because it yields easily to the
law of large numbers for many data points, as it converts the product into a sum. In order to
evaluate the right-hand side of equation (9) for a given model, we need to make some assumption
about f. For the analysis that follows we will assume that f'is Gaussian. A similar analysis could
be done for any other assumption on f. Thus

- _ b —a-wpe
f(dll,fA,)—We (10)

where uand ¢ depend on /,_,,. An equivalent way to formulate this model (say) for the price of a
stock is

S, = u+aN(,1) (11)

To reproduce the Black—Scholes model, one would choose u =S, ,,(1+ iAfr) and
o = 6S,_,,~At. In particular, we see that Black—Scholes models satisfy our Gaussian assump-
tion on f. The likelihood that the data occurred under a particular model ¢ is given by

I(d | model i) = 1‘[ o (=Y /2517 (12)

V2na6t?

Maximizing the likelihood, or equivalently maximizing the log(likelihood) is the criterion that we
will use to differentiate between the models. As an example, consider the training of neural
networks to predict the variance using maximum likelihood as the objective function to optimize
(Weigend and Nix, 1995). In this case, the models i correspond to all the functions that the neural
network can implement and we are choosing one of them using maximum likelihood as the
criterion.

ANALYSIS OF THE MAXIMUM LIKELIHOOD SCHEME

Expected value of the likelihood and log(likelihood)
We begin by considering the advantages of the maximum likelihood scheme. Maximum likeli-
hood is widely used for parameter estimation (Valavanis, 1959). Here we will analyse maximum
likelihood through its expectation. It is well known that for a sample of data drawn from the same
distribution, the maximum likelihood predictors are fi = d, the sample mean and 6% = d*> — d?,
the sample variance, and according to the law of large numbers, these estimates approach the true
values with probability 1. Suppose we do not have many data points. We can look at the
expectation of the likelihood and the log(likelihood) instead.

Consider the likelihood as a function of the data d,. Thus it is itself a random variable,
for which the distribution is known given the distribution of the data point &, . One can calculate
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‘the expectation of /(d,))’ = (/) and ‘the expectation of log(/(d,))’ = (log /) for model i. For
simplicity in notation, we will drop the o index.

1| (u— ) R
log(l,) = ) [% + log(a2 + a?) + log 2n:|

1 oy 2
= [w + log(&f) + log Zn] (13)

The first expression tends toward the second in the limit > — 0, as should be expected. Both the
likelihood and log(likelihood) are convex independently in the variables fi; and 6',2. However, as
functions of two variables, they are not convex.

max

B &lz[lOgUl)] = [All- — U, 6',2 -0
g?,a);g[aOg(l,'))] =i, —~> U, 7 —> o’ (14)

We see that the expectation of the log(likelihood) is maximized when the predicted mean and
variance are equal to the true mean and variance. So, if we expect the observed value of the
log(likelihood) to be close to its expected value, which will be true with enough data points, then
it seems reasonable to maximize the log(likelihood) in order to predict {fi, 6}. For this reason we
use maximizing the log(likelihood) as our criterion for choosing between models.

The expectation of the likelihood itself is not maximized at the correct values. Its maximum is
when ¢ — 0. This rules out likelihood itself as a comparator because its expected behaviour is not
desirable. What about the log(likelihood)? To investigate this issue we first define what it means
for a model to be ‘better’ than another. Suppose we have two models, model 1 and model 2, with

|,&1 —ul > |,&2_.U|
and
|6, —c| >16,— 0] (15)

We will then say that model 1 is worse than model 2.* The hope now is that if model 1 is worse
than model 2 then its expected log(likelihood) should also be worse. Unfortunately one can find
common situations where this is not the case, i.e. model 1 has a higher expected log(likelihood)
though it is worse. This becomes evident from Figure 3.

As 67 — 0, (log ) — — oo so we can make model 2’s variance large while sending model 1’s
variance to zero and fulfil the condition. Thus we see that even log(likelihood) will lead to an
expected worse choice in such situations. However, we note that training (say, neural networks)
by maximizing log(likelihood) (Weigend and Nix, 1995) using small perturbations will select
‘better’ models on average because the maximum is unique. Note that by initially choosing a
model with lower log(likelihood), training could be faster due to the asymmetry of the curve
about the actual variance. If the neural network cannot implement the maximum of the curve
then training may stop at a worse value than is necessary as a result of this asymmetry.

* One might consider the alternative measure e = |log[6%/¢?]|. With this measure it is also possible to find two models
(1,2) with ¢, < e, and (log /,) < (log ,).
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{Log) )

Figure 3. Plot of (log /,) as a function of 6’?. The curve is not symmetric about the true variance. In the
figure is shown how model 2 has a higher expected likelihood despite having a higher prediction error

(e;>ey)

From this analysis, we see that a model predicting a smaller variance can have an expected
log(likelihood) that is lower than a ‘worse’ model which is predicting a higher variance. What
about the possibility of a ‘worse’ model that is predicting a lower variance? Is there some sense in
which we may be wrong and select the incorrect model? This will be the subject of the next
section. In particular, we will compare the ground truth model to a ‘worse’ model predicting a
lower variance.

Probability of choosing the incorrect model

Suppose we have two models, model 1 worse than model 2 as described above. One can ask
whether it is possible that model 1 will be chosen more often than model 2. This is distinct from
the analysis of the expected value because it is possible for the expected value to be greater for
model 1 despite the fact that the probability that model 1’s log(likelihood) is higher is very small.
In this case one might still be content because most of the time one will be choosing the better
model even though its expected log(likelihood) is lower. Unfortunately, we show that this too is
not the case.

In making a choice between two models, one compares their likelihoods and chooses the model
for which the likelihood is higher. One can therefore ask the question: which model has a higher
probability of being chosen? If model 1 has a higher likelihood less than half the time then we say
that it is the ‘inferior’ model in the sense that we will choose model 2 as our estimate of the ground
truth model more often than we would choose model 1. Once again we can ask the question: Is it
possible that one might select a ‘worse’ model (in the sense described in the previous section)
more often than one might choose a ‘better’ model? To answer this question we will compare
a ‘worse’ model with the ground truth model. We shall see that this will lead to some striking
results.

© 1998 John Wiley & Sons, Ltd. J. forecast. 17, 349-368 (1998)
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We set up the problem in the following way. We have n data points {/,_,,, d,} where each of the
d, have been drawn from a (possibly different) distribution ~ N(u,, o). We will consider the case
where i, = p, (perfect prediction of the mean), while the variances predicted by the models are
given by

&, =10, =0 (16)
Thus the models are parameterized by A a=1,...,n. The likelihood of model i with parameters
A; 18
Id13) =[Ny, 20,) (17)
o

We are going to compare the two models {4, = 1}, the perfect model, and {4,}. We choose the
model for which the likelihood of the data is highest. We seek the probability (P;) that /5 > /;
where /; is the likelihood of the ground truth model and /; is the likelihood of model A.

Now we treat the data outcome d as a random varlable X. Then this likelihood itself is a
random variable, depending on the parameter A, so we can ask the question: what is the
probability that the random variable with parameter / is greater than the random variable with
parameter A = 1? Thus we are asking for the frequency with which the ‘worse’ model is chosen
over the actual model. This probability is given by

P; = Prob[l; > ;] = f d"x I(x |Z =) (18)
. (- >1I-}

For the case / = /7, the result is calculated in Appendix A along with various asymptotic
properties. Figure 4 summarlzes the result in a plot of P, versus A. For / slightly less than 1, P, is
greater than . This means that a worse model will be chosen over the actual model more thdn
half the time. This holds for any number of data points. The smallest value that A can be with
P> %()L (n)) 1s tabulated for various n in Table 1.

min

Table I. The results for the analysis of the probability that model J is chosen more often than the
actual model

n ;Lmin(n) Pmax(n) <1/;L> = %oorrec
1 0.4937 0.6831 00

2 0.7072 0.6321 1.7725
5 0.8729 0.5842 1.1894
10 0.9349 0.5594 1.0837
20 0.9670 0.5422 1.0397
50 0.9866 0.5268 1.0153
100 0.9934 0.5186 1.0076
500 0.9986 0.5088 1.0015
1000 0.9993 0.5059 1.0018

For 2.,;,(m) <A <1, P, > 1/2. (1/A) is the expected correction factor o

likelihood model prediction (& — a,__6). P,

oree 10T the new prediction given the maximum

correc () is the maximum value that P, can take and occurs for 2 — 1.
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05

increasing

n

1]

1 A
Figure 4. Plot of P, as a function of 1. For n even we get the result
! 72 log 2
p=1—e™S, p=t %"
A /‘z::() 'B ;LZ 1

The result of n odd can be obtained numerically. Regions where the curve exceeds 'z are those where the
worse model is selected more often that the actual one

Referring to Table I, we note that for n = 100, a model with a 0.7% error in the prediction of
¢ will be chosen more often than the actual model. This is a fairly significant error when dealing
with a tradable quantity.

CORRECTING FOR THE MAXIMUM LIKELIHOOD PREDICTION ERROR

Until now we have diagnosed some problems with the maximum likelihood scheme. We now try
to tackle the problem of compensating for this error using our understanding of how it fails. The
models that are more probable than the actual model are those which underestimate the variance
(assuming the mean is predicted perfectly). One expects that the model chosen using maximum
likelihood will have a systematic bias for predicting a variance lower than the actual variance.
Suppose that we have a model that is predicting ¢ = Ao on average. We would like to correct our
prediction arrived at using maximum likelihood methods by multiplying our prediction by some
correction factor to get a better prediction:

0 = Oiorrecl (19)
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In order to calculate o, .. we need the probability distribution for obtaining a particular model
with parameter 4. The method of compensating will depend on the exact method that was used to
arrive at the model. Here we will consider the case that seems appropriate to neural networks
that are trained on the data using maximum likelihood. The general philosophy will become
apparent.

The problem is set up in the following way. The method by which a model is chosen is by
comparison of likelihood on a data set that contains some number of data points n. The model
with the highest likelihood is then chosen. This model will then serve as the predictor and so given
a prediction, we would like to correct it by some factor.

Probability distribution over A

We consider the following model for learning to predict the variance. We have the class of
models that are parameterized by A. Training proceeds in the following way. We start with a
random A and perturb 4 a little towards the higher range and towards the lower range. So we are
dealing with the three A’s {1 —(d1/2), 4, 1+ (d4/2)}. Now using the data we compare the
likelihood of these three models and choose the model that produces the highest likelihood. We
continue the process until no change in A results. One can now decrease the step size if desired,
to attain the necessary accuracy. In this way, training of the model proceeds in such a way
that the model ends up selecting that 4 that maximized the likelihood function on the data set.
In fact the learning proceeds not by varying 4 but by varying the parameters of the model (in
the case of neural networks, these are the weights). One might question why the model’s 4
should be the same for all the possible inputs. This will not be the case in general, but we
are asking what the correction factor is on average. To calculate this we look at the proba-
bility distribution that we end up with a model with a certain 4 (for which the correction factor
is 1/4).

What is the probability that we stop at the value A? We consider the region [A, A + dA] and
derive the probability density over 4, which we can use to calculate various desired properties like
expectations. The detailed derivation of this probability density is in Appendix B. The final result
we get for this probability density is

22
n/2,—HNA /2 2\ /21
Poydr=""C T <i> 2da (20)

)

We show a plot of P(4) for various #n in Figure 5.

Thus given the data set, we settle on a model 4 that maximizes the likelihood. The probability
for this is P(4). Knowing the properties of P(/), can we change the prediction in some deter-
ministic way in order to improve our expected performance? More quantitatively, we write

0= O(C()I‘I‘BCO- = OCCOI‘I‘BC/L(T' SO

o :l 21

correc i
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increasing

P(2) n

n=1

1 A

Figure 5. Plot of P(A) for various values of n. As n — oo P(A) tends to a Gaussian centred at 1. Whenn =1,
P(2) is finite at the origin

We are interested in (1/4), the expected correction factor. One might also be interested in
knowing, on average, by what factor we are off in the prediction of g, i.e. (1). Note that (1/4) > 1/
(4). These quantities are easily calculated from P(1) using the identity (B.8) in Appendix B:

[N F<%>
“corrcc—<z>— (22 r(%)
! _ <n> F(E)

(22)

Values of the correction factor for various values of n are given in Table 1. Note that for n = 100
the correction is about 0.8%, which is not trivial.

We summarize the correction method, assuming that the models are predicting the mean well.
Train the models using maximum likelihood and arrive at a model to be used for future
predictions. Now given a new test input, obtain this model’s prediction and correct by the
correction factor described above.

© 1998 John Wiley & Sons, Ltd. J. forecast. 17, 349-368 (1998)
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Table II. Comparison of the theoretical results that are predicted from the induced probability distribution
over A with the experimentally obtained values for learning the variance with a neural network

<}> <1//1) = acorrec
n Expt Theory Expt Theory
50 0.68 +£0.18 0.56 +0.07 1.254+0.18 1.98+0.58
100 0.66 +£0.04 0.70+0.07 1.24+0.03 1.274+0.12
150 0.67+£0.05 0.77+0.06 1.22+0.04 1.16+0.06
300 0.88+0.14 0.86+0.04 1.074+0.09 1.074+0.02
500 0.92+0.05 0.91+0.03 1.04+0.03 1.04+0.01

The theoretical predictions were obtained by assuming a proportional relationship between 7. and n, fitting y to the data
using the expected theoretical form. For (1), y was 0.006 +0.002 and for (1/4), y was 0.044 +0.014. It is interesting to
compare 1/y to the number of weights =N, . 1/N, =0.008.

Example: Training neural networks using maximum likelihood

In this example the model is a neural network with 131 weights that are involved in the training of
the model to predict o (Weigend, 1995). The input variable which we have called /,_,,is x € [0,7].
The mean pu(x) and variance ¢*(x) are functions of x and the model is a mapping

The network was trained on n examples by altering the weight in the direction that increased the
likelihood that the data occurred under the model. The final network arrived at is used as the final
model. It is to this network that we wish to apply the correction factor. A question arises as to
what the effective number of data points (n.4) is. Each parameter can be regarded as being trained
on some of the data points. So n.; should be approximately proportional to the number of
examples, n g ~ yn. Using this relationship we can get a theoretical prediction to compare with
the experimental value. The results are summarized in Table I1.*

The agreement between the theoretical values and the experimental values seems convincing
especially as the number of data points increases. Also note that the variance in the experimental
values is relatively small, implying that the network has indeed settled on a model with almost a
constant parameter of 1. How one would calculate n g for a general class of models with a given
learning algorithm is not yet obvious. In our discussion we have assumed that the class of models
is good enough to implement the various models with parameter A. Exactly how we search
through this space and how the models are parameterized are expected to affect n 4.

CONCLUSIONS

It seems appropriate to summarize the path that we have followed in this paper. We started out
by setting up a framework for comparing between models. In this framework, we used maximum

* We thank Zehra Cataltepe of the Learning Systems Group at Caltech for use of the results from her experiments in
verifying the method of Weigend (1995). («....) Was computed from the results only where ¢ was larger than a threshold
because where ¢ is small, the behaviour is erratic. The mean as expected was learned well, so we can apply the analysis
above where we assumed the mean was being predicted exactly.
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IN SAMPLE OUT OF SAMPLE

Choosing the model that

maximizes the likelihood Probability of choosing

FINITE will yield a model that the wrong model
DATA systematically predicts is > % for some ‘worse’
lower variance, even if models.

the mean is predicted well.

Possible to find
EXPECTED NOT models 1,2 with

VALUE APPLICABLE model 1 worse than 2
but (logl1) > (logls).

Figure 6. Diagram depicting what could go wrong with the Maximum likelihood scheme in the three
possible cases

likelihood to compare between models and we found that this leads to choosing the wrong
models. The results of the maximum likelihood analysis can be summarized by Figure 6.

We find a systematic underestimation of the variance in time series analogous to that of a
sample variance. However, when the mean u(z) is given, this underestimation persists. When the
mean is predicted well, we attempt to correct for the systematic underprediction of the variance
by multiplying by a correction factor, «... We find that this correction factor is economically
significant even for a large number of data points. In this way we are able to choose a model from
a class of models that were trained on different data, and then improve that model using the
correction factor. Unfortunately this will not work when the mean is not being predicted well. In
this case, the variance will tend to be overpredicted to compensate for the bias. Thus one would
like to have a way to predict the variance without having to predict the mean. This is a direction
open for future work as is the question of combining models that have been trained on different
data. It is necessary, however, to have a ‘good’ way to compare models before one even starts to
think about combining models.

APPENDIX A

In this appendix we derive the technical results used in the third section. The a priori model that
will be assumed is Gaussian. It will be shown that there are instances where using maximum
likelihood to compare two models will lead to choosing the ‘wrong’ model most of the time.
Suppose we have a data point (d,) drawn from the actual distribution. Given a model {f1 , 6} the
likelihood of the data is

Id, |1, 8,) =N, (1. 8,) = e~ R 2%, (AD)

q-

)
2no;
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n data points d, are drawn independently from distributions with (possibly varying) actual means
(u,) and (possibly varying) actual variances (¢,). Assume that all models are predicting the mean
correctly (i, = p,), while the variances predicted by the models are given by

>0 (A.2)

The likelihood of model i with parameters :1,. is

Z(dw)—]‘[ o, (o 7,0,) (A.3)

Treat the data outcome d as a random variable X. Then this likelihood itself is a random vari-
able, depending on the parameter 4. We seek the probability that the random variable with
parameter A is greater than the random variable with parameter A = 1, i.e. we are asking for the
frequency with which the ‘worse’” model is chosen over the actual model. This probability is
given by

P; = Prob[/; > ;] = ./[/ - d'x I(xX|A=1) (A.4)

The boundary condition for the integral is non-trivial. The condition /; > /; implies
log(/;) = log(/;) due to the monotonicity of the log function. Thus the boundary condition
reduces to

Z(x 207 [1 —,%} > Y log(4,) (A.5)

The boundary condition is symmetric in i, the constraint on the /s is independent of i and the
likelihood function itself is symmetric in / so we expect the condition for P; to be maximized to be
symmetric in /. With this as motivation, we consider the class of models for which 4 = /;, i.e. all
/s constant.

The boundary condition now reduces to

Z(xzaz <fn O0<i<l

72 log /.
p=2 8 B>0 (A.6)
(x, — ) 2 -1
Z 20_2 /ﬁ 1<4
, [N 1
0<A<1:>0</3<§ A—>0,1:>/3—>0,§ (A.7)
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The integral can now be reduced to one-dimensional form by changing variables to
u,=(x, — u,)/o, and then transforming to spherical coordinates with the aid of the following
result derivable by elementary methods:

271/2 (R
n n—1
/ d'xf(r) = —5~ / drr f(r) (A.8)
r<R — 0
B r(z)

Thus with some manipulation one finally gets

1 fin 1., 1

dy yn/2 Lo 0<ﬁ<§

b, T
‘ L Oody yn/2—1eﬂ’ -~ <p
T

When 7 is even we can get an exact answer. When 7 is odd, and large, we can get an answer in
terms of the asymptotic form for the error function. We pursue the case n even, leaving the rest to
numerical analysis. We also restrict ourselves to the interesting domain 0 < 4 < 1. Thecase 1 < 4
follows an identical analysis. We rewrite equation (A.9) as

(—1)”171 a m—1 2pm .
FW)[QE) A @yeQ} (A.10)

g=1

(A.9)

N | —

where n=2m. Performing the integral followed by the derivatives and noting that
I'(m) = (m — 1)! for positive integer m yields after some algebra

n/2—1
_ 7[5)1 Z (ﬂn) (All)

We use the following lemma to discover an asymptotic form for this as n — oo:

Lemma
' L Q)2 o e )2 f(n)
yg{e g%ﬂ}:i[WCMJanzig&PF< 1)] (A.12)

The asymptotic form of P, has

- m[(5-1) -]

Thus for & < 0 (= P, > 1/2), B(n) must approach 1 faster than !
We can make this more precise. Suppose that A =1 — g(n) and = 1 — 5(n). Then expanding
to second order using the definition of (1) one finds

&) = 200 — 27+ 50r) o) = &#”—”w( ) (A.13)
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Expanding the expression for P, in n(n) we can get an asymptotic form as f — % We can then
answer the question: what are the values of f that given P, > 1/2? Tedious but elementary
algebra yields

—n n/2—1
Pt =2 L o+ o + 8] et =" (14

=~ (5— 1)!

Using Stirling’s approximation for the factorial function, we can now get an expression for that

Jmin(m) for which P, = 1/2. Thus P, > 1/2 for /4, (n) <A <1
oo 1 3
Ain ()7 — |:0 6 — 0—:| (A.15)
n n

As 2 — 17, P)(n) tends toward its maximum value (P,

ax(D) for given n

A—>1" 1 1 1
P, — P l —— A.16
’ max() =3 m[ 36n} (A.16)

Note the fact that for  fairly large, 4, (n) is significantly less than 1. All models that lie in the
region between /4. (n) and 1 are more likely to be chosen than the actual model, so the question
arises as to whether one can compensate for this systematic underestimation of the variance when
the maximum likelihood scheme is used. This is the subject of Appendix B.

APPENDIX B

In this appendix we derive the probability distribution used in the development of the A
correction factor. A similar analysis as that which led to equation (A.6) yields the following
conditions:

_ 2
ZM <np.ly) Ah<iy 2 1og<)i>
<l = (x )2 Bl i) =5~ p>0 (B
Z B > nB, i) A<y [%_1}
1

What is needed is that l)+d/L » < /;and that/; g, </,. From equation (B.1) this is equivalent to
the condition that the data satlsfy

2
nﬁ<u——> Z(X 262"“) /3() +%> (B.2)
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So to get the probability that this is true we simply need to integrate the probability density for
the x;’s over the region where this condition is true. Thus we want

/ d"xHin(,uz, ) (B.3)
dz —u,) 4 !
nﬁ(& A= 7) < Z% < nﬁ(x, A+ %)

This is the probability that the data fall within the range required to ensure that /;,_;; , </; and
that/; _4,, < ;. But this is precisely the probability that our algorithm stops at 4. Using equation
(A.8) we can reduce this integral into one-dimensional form as was done for equation (A.9). Thus
the probability that A'e, 2 + d4/2] is given by

dx 1 nf(2, A+ di/2) L
PO = | ay e (B.4)
— p(A,A— dA/2
F( 2) nf( /2)

The idea now is to expand the limits in dy. To this end we require the expansion (1, A + &) = 4%/2
[1 4 6/2] + 9(6%). We use this to expand the limits of integration and then using the substitution
nx =y — ni*/2 the integral reduces to

n/2a—ni2)2 /92
POy i = e (i>

DR

Expanding the integrant as a Taylor series in x and performing the integral gives a result as a
Taylor series in dA. Taking the limit as d4 — 0 one finally gets

n/2—1

J/4 di ) n/2—1
/ dX[1+—)2C} e (B.5)

—1/4d A

1/2 a—ni2)2 2\ 1n/2-1
POy i =" (i) i 5o

r) 2

Thus we have found, using this method of model selection, the probability that a model with
parameter /4 is obtained. We are interested in quantities like the expected correction factor

1
Leorrec — I

(B.7)

These quantities are easily calculated from P(1) using the identity

n/2—1

R e e s (2 m/z—ll"(n_;m>
<;L>_/o W 1“('5)(2) . _<n> Tg) (B.8)
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One finds by substituting the value m = +1 that

_ (LN F<n;l>
“corre°‘<z>‘ (5) r(%)

Ly G)
() ( >F(n;1>

2
Thus we have done what we set out to achieve at the beginning of this appendix. Given that a
model was selected (trained) using the maximum likelihood criterion, we have found a correction
for the systematic underestimation of the variance. If one wishes, one could also calculate the
variances of these correction factors.

(B.9)

ACKNOWLEDGEMENTS

We would like to thank Dr Amir Atiya, Joseph Sill and Zehra Cataltepe for helpful discussion.

REFERENCES

Black, F. and Scholes, M. S., ‘The pricing of options and corporate liabilities’, Journal of Political
Economy, 3 (1973), 637-654.

Bollerslev, T., ‘Generalized autoregressive conditional heteroscedasticity’, Journal of Econometrics, 31
(1986), 307-327.

Crouchy, M. and Galai, D., ‘Hedging with a volatility term structure’, The Journal of Derivatives, Spring
(1995), 45-52.

Engle, R. F., ‘Autoregressive conditional heteroscedasticity with estimates of the variance of U.K.
inflation’, Econometrica, 50 (1982), 987-1008.

Fama, E. E., “The behavior of stock market prices’, Journal of Business, 38 (1965), 34—105.

French, K. R., ‘Stock returns and the weekend effect’, Journal of Financial Economics, 8 (1980), 55-69.

French, K. R., Schwert, G. W. and Stambaugh, R. F., ‘Expected stock returns and volatility’, Journal of
Financial Economics, 19 (1987), 3-29.

Hull, J. C., Options, Futures and other Derivative Securities, 2nd edn, Englewood Cliffs, NJ: Prentice Hall,
1993.

Hull, J. and White, A., ‘“The pricing of options on assets with stochastic volatilities’, Journal of Finance, 2
(1987), 281-300.

Ito, K., ‘On stochastic differential equations’, Memoirs, American Mathematical Society, 4 (1951), 1-51.

Kat, H. M., ‘Replicating ordinary call options: a stochastic simulation study’, Presented at the 13th AMEX
Options and Derivatives Colloquium, New York, 1993.

Nelson, D. B., ‘Conditional heteroscedasticity in asset returns: a new approach’, Econometrica, 59 (1991),
347-370.

Poterba, J. and Summers, L., ‘The persistence of volatility and stock market fluctuations’, American
Economic Review, 76 (1986), 1142—1151.

Schewert, G. W., ‘Why does stock market volatility change over time? Journal of Finance, 44 (1989),
1115-1153.

Shiller, R. J., Market Volatility, Cambridge, MA: The MIT Press, 1993.

© 1998 John Wiley & Sons, Ltd. J. forecast. 17, 349-368 (1998)



368 M. Magdon-Ismail and Y. S. Abu-Mostafa

Valavanis, S., Econometrics: An introduction to maximum likelihood methods, New York: McGraw-Hill,
1959.

Weigend, A. S. and Nix, D. A., ‘Learning local error bars for nonlinear regression’, In Tesauro, G.,
Touretzky, D. and Leen, T. (eds), Advances in Neural Information Processing Systems ( NIPS): Proceedings
of the 1994 Conference, 7 (1995), 489—496.

Author’s biographies:

Malik Magdon-Ismail is a Graduate Student in Electrical Engineering at Caltech. In 1993 he received a BS in
Physics from Yale University, in 1995 he received a MS in Physics from Caltech. He is currently doing
research with the Learning Systems Group at Caltech.

Yaser S. Abu-Mostafa is Professor of EE and CS at Caltech. He heads the Learning Systems Group at
Caltech whose research focuses on the theory, algorithms, and applications of automated learning. He has
more than 60 technical publications, including two articles in Scientific American.

Authors’ address:
Malik Magdon-Ismail and Yaser S. Abu-Mostafa, Caltech 136-93, Pasadena, CA 91125, USA.

© 1998 John Wiley & Sons, Ltd. J. forecast. 17, 349-368 (1998)



