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Abstract 

We address the problem of learning an unknown function by 
pu tting together several pieces of information (hints) that we know 
about the function. We introduce a method that generalizes learn­
ing from examples to learning from hints. A canonical representa­
tion of hints is defined and illustrated for new types of hints. All 
the hints are represented to the learning process by examples, and 
examples of the function are treated on equal footing with the rest 
of the hints. During learning, examples from different hints are 
selected for processing according to a given schedule. We present 
two types of schedules; fixed schedules that specify the relative em­
phasis of each hint, and adaptive schedules that are based on how 
well each hint has been learned so far. Our learning method is 
compatible with any descent technique that we may choose to use. 

1 INTRODUCTION 

The use of hints is coming to the surface in a number of research communities dealing 
with learning and adaptive systems. In the learning-from-examples paradigm, one 
often has access not only to examples of the function, but also to a number of 
hints (prior knowledge, or side information) about the function. The most common 
difficulty in taking advantage of these hints is that they are heterogeneous and 
cannot be easily integrated into the learning process. This paper is written with the 
specific goal of addressing this problem. The paper develops a systematic method 
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for incorporating different hints in the usuallearning-from-examples process. 

Without such a systematic method, one can still take advantage of certain types of 
hints. For instance, one can implement an invariance hint by preprocessing the input 
to achieve the invariance through normalization. Alternatively, one can structure 
the learning model in a way that directly implements the invariance (Minsky and 
Papert, 1969). Whenever direct implementation is feasible, the full benefit of the 
hint is realized. This paper does not attempt to offer a superior alternative to 
direct implementation. However, when direct implementation is not an option, we 
prescribe a systematic method lor incorporating practically any hint in any descent 
technique lor learning. The goal is to automate the use of hints in learning to a 
degree where we can effectively utilize a large number of different hints that may 
be available in a practical situation. As the use of hints becomes routine, we are 
encouraged to exploit even the simplest observations that we may have about the 
function we are trying to learn. 

The notion of hints is quite general and it is worthwhile to formalize what we mean 
by a hint as far as our method is concerned. Let I be the function that we are 
trying to learn. A hint is a property that I is known to have. Thus, all that is 
needed to qualify as a hint is to have a litmus test that I passes and that can be 
applied to different functions. Formally, a hint is a given subset of functions that 
includes I. 
We start by introducing the basic nomenclature and notation. The environment X 
is the set on which the function I is defined. The points in the environment are 
distributed according to some probability distribution P. I takes on values from 
some set Y 

I:X-+Y 

Often, Y is just {O, I} or the interval [0, 1]. The learning process takes pieces of 
information about (the otherwise unknown) I as input and produces a hypothesis g 

g:X-+Y 

that attempts to approximate f. The degree to which a hypothesis g is considered 
an approximation of I is measured by a distance or 'error' 

E(g, !) 

The error E is based on the disagreement between g and I as seen through the eyes 
of the probability distribution P. 

Two popular forms of the error measure are 

E = Pr[g(x) =F f(x)] 

and 
E = £[(g(x) - l(x))2] 

where Pr[.] denotes the probability of an event, and £[.J denotes the expected value 
of a random variable. The underlying probability distribution is P. E will always 
be a non-negative quantity, and we will take E(g,!) = ° t.o mean that 9 and I 
are identical for all intents and purposes. We will also assume that when the set 
of hypotheses is parameterized by real-valued parameters (e.g., the weights in the 
case of a neural network), E will be well-behaved as a function of the parameters 
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(in order to allow for derivative-based descent techniques). We make the same 
assumptions about the error measures that will be introduced in section 2 for the 
hints. 

In this paper, the 'pieces of information' about f that are input to the learning 
process are more general than in the learning-from-examples paradigm. In that 
paradigm, a number of points Xl, ... , X N are picked from X (usually independently 
according to the probability distribution P) and the values of f on these points are 
provided. Thus, the input to the learning process is the set of examples 

(Xl, f(XI)),"', (XN' f(XN)) 

and these examples are used to guide the search for a good hypothesis. We will 
consider the set of examples of f as only one of the available hints and denote it by 
Ho. The other hints HI,' .. ,HM will be additional known facts about f, such as 
invariance properties for instance. 

The paper is organized as follows. Section 2 develops a canonical way for represent­
ing different hints. This is the first step in dealing with any hint that we encounter 
in a practical situation. Section 3 develops the basis for learning from hints and 
describes our method, including specific learning schedules. 

2 REPRESENTATION OF HINTS 

As we discussed before, a hint Hm is defined by a litmus test that f satisfies and 
that can be applied to the set of hypotheses. This definition of Hm can be extended 
to a definition of 'approximation of Hm' in several ways. For instance, 9 can be 
considered to approximate Hm within f. if there is a function h that strictly satisfies 
H~ for which E(g, h) ::; f.. In the context of learning, it is essential to have a 
notion of approximation since exact learning is seldom achievable. Our definitions 
for approximating different hints will be part of the scheme for representing those 
hints. 

The first step in representing Hm is to choose a way of generating 'examples' of the 
hint. For illustration, suppose that Hm asserts that 

f: [-1,+1]- [-1,+1] 

is an odd function. An example of Hm would have the form 

f(-x) = -f(x) 

for a particular X E [-1, +1]. To generate N examples of this hint, we generate 
Xl,'" ,XN and assert for each Xn that f( -xn) = - f(xn). Suppose that we are 
in the middle of a learning process, and that the current hypothesis is 9 when the 
example f( -x) = - f(x) is presented. We wish to measure how much 9 disagrees 
with this example. This leads to the second component of the representation, the 
error measure em. For the oddness hint, em can be defined as 

em = (g(x) + g( _x))2 

so that em = 0 reflects total agreement with the example (i.e., g( -x) = -g(x)). 
Once the disagreement between 9 and an example of Hm has been quantified 
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through em, the disagreement between 9 and Hm as a whole is automatically quan­
tified through Em, where 

Em = £(em) 

The expected value is taken w.r.t. the probability rule for picking the examples. 
Therefore, Em can be estimated by a.veraging em over a number of examples that 
are independently picked. 

The choice of representation of H m is not unique, and Em will depend on the form 
of examples, the probability rule for picking the examples, and the error measure 
em. A minimum requirement on Em is that it should be zero when E = O. This 
requirement guarantees that a hypothesis for which E = 0 (perfect hypothesis) will 
not be excluded by the condition Em = O. 

Let us illustrate how to represent different types of hints. Perhaps the most common 
type of hint is the invariance hint. This hint asserts that I(x) = I(x') for certain 
pairs x, x'. For instance, "I is shift-invariant" is formalized by the pairs x, x' that 
are shifted versions of each other. To represent the invariance hint, an invariant 
pair (x, x') is picked as an example. The error associated with this example is 

em = (g(x) - g(x'))2 

Another related type of hint is the monotonicity hint (or inequality hint). The 
hint asserts for certain pairs x, x' that I(x) :S I(x') . For instance, "I is mono­
tonically nondecreasing in x" is formalized by all pairs x, x' such that x < x'. To 
represent the monotonicity hint, an example (x, x') is picked, and the error associ­
ated with this example is given by 

_ {(g(x) - g(X'»2 
em - 0 

if g(x) > g(x') 
if g(x) :S g(x' ) 

The third type of hint we discuss here is the approximation hint. The hint 
asserts for certain points x E X that I(x) E [ax, bx]. In other words, the value of 1 
at x is known only approximately. The error associated with an example x of the 
approximation hint is 

if g(x) < ax 
if g(x) > bx 

if g(x) E [ax,bx] 

Another type of hints arises when the learning model allows non-binary values for 
9 where 1 itself is known to be binary. This gives rise to the binary hint. Let 
X ~ X be the set where 1 is known to be binary (for Boolean functions, X is the 
set of binary input vectors). The binary hint is represented by examples of the form 
x, where x E X. The error function associated with an example x (assuming 0/1 
binary convention, and assuming g( x) E [0, 1]) is 

em = g(x)(l- g(x» 

This choice of em forces it to be zero when g(x) is either 0 or 1, while it would be 
positive if g( x) is between 0 and 1. 



A Method for Learning from Hints 77 

It is worth noting that the set of examples of f can be formally treated as a hint, 
too. Given (Xl, f(xt)},···, (XN' f(XN )), the examples hint asserts that these are 
the correct values of f at those particular points. Now, to generate an 'example' of 
this hint, we pick a number n from I to N and use the corresponding (xn, f(xn)). 
The error associated with this example is eo (we fix the convention that m = 0 for 
the examples hint) 

eo = (g(xn ) - f(:c n ))2 

Assuming that the probability rule for picking n is uniform over {I,··· ,N}, 

1 N 
Eo = E(eo) = N I)g(xn) - f(xn))2 

n=l 

In this case, Eo is also the best estimator of E = E[(g(x) - f(x))2] given Xl , ··· ,xN 
that are independently picked according to the original probability distribution P . 
This way of looking at the examples of f justifies their treatment exactly as one of 
the hints, and underlines the distinction between E and Eo. 

In a practical situation, we try to infer as many hints about f as the situation 
will allow. Next , we represent each hint according to the scheme discussed in this 
section. This leads to a list Ho, H l ,··· ,HM of hints that are ready to produce 
examples upon the request of the learning algorithm. We now address how the 
algorithm should pick and choose between these examples as it moves along. 

3 LEARNING SCHEDULES 

If the learning algorithm had complete information about f, it would search for a 
hypothesis g for which E(g, f) = o. However, f being unknown means that the 
point E = 0 cannot be directly identified. The most any learning algorithm can do 
given the hints Ho, HI,··· ,HM is to reach a hypothesis g for which all the error 
measures Eo, El, · ·· , EM are Zeros. Indeed, we have required that E = 0 implies 
that Em = 0 for all m. 

If that point is reached, regardless of how it is reached, the job is done. However, it 
is seldom the case that we can reach the zero-error point because either (1) it does 
not exist (i.e., no hypothesis can satisfy all the hints simultaneously, which implies 
that no hypothesis can replicate f exactly), or (2) it is difficult to reach (Le., the 
computing resources do not allow us to exhaustively search the space of hypotheses 
looking for that point). In either case, we will have to settle for a point where the 
Em's are 'as small as possible'. 

How small should each Em be? A balance has to be struck, otherwise some Em's 
may become very small at the expense of the others. This situation would mean 
that some hints are over-learned while the others are under-learned. We will discuss 
learning schedules that use different criteria for balancing between the hints. The 
schedules are used by the learning algorithm to simultaneously minimize the Em's. 
Let us start by exploring how simultaneous minimization of a number of quantities 
is done in general. 

Perhaps the most common approach is that of penalty functions (Wismer and Chat-
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tel'gy, 1978). In order to minimize Eo, E 1 ,· •• ,EM, we minimize the penalty function 

M 

L am Em 
m=O 

where each am is a non-negative number that may be constant (exact penalty 
function) or variable (sequential penalty function). Any descent technique can be 
employed to minimize the penalty function once the am's are selected. The am's 
are weights that reflect the relative emphasis or 'importance' of the corresponding 
Em's. The choice of the weights is usually crucial to the quality of the solution. 

Even if the am's are determined, we still do not have the explicit values of the Em's 
in our case (recall that Em is the expected value of the error em on an example of 
the hint). Instead, we will estimate Em by drawing several examples and averaging 
their error. Suppose that we draw N m examples of Hm. The estimate for Em would 
then be 

1 Nm 
_ ~ e(n) 
Nm L- m 

n=l 

where e~) is the error on the nth example. Consider a batch of examples consisting 
of No examples of Ho, Nl examples of HI, ... , and NM examples of HM. The 
total error of this batch is 

m=O n=l 

If we take N m ex: am, this total error will be a proportional estimate of the penalty 
function 

M 

L am Em 
m=O 

In effect, we translated the weights into a schedule, where different hints are em­
phasized, not by magnifying their error, but by representing them with more exam­
ples. 

A batch of examples can be either a uniform batch that consist of N examples of 
one hint at a time, or, more generally, a mixed batch where examples of different 
hints are allowed within the same batch. If the descent technique is linear and the 
learning rate is small, a schedule that uses mixed batches is equivalent to a schedule 
that alternates between uniform batches (wit.h frequency equal to the frequency 
of examples in the mixed batch). If we are using a nonlinear descent technique, 
it is generally more difficult to ascertain a direct translation from mixed batches 
to uniform batches, but there may be compelling heuristic correspondences. All 
schedules discussed here are expressed in terms of uniform batches for simplicity. 

The implementation of a given schedule goes as follows: (1) The algorithm decides 
which hint (which m for m = 0,1,···, M) to work on next, according to some 
criterion; (2) The algorithm then requests a batch of examples of this hint; (3) It 
performs its descent on this batch; and (4) When it is done, it goes back to step 
(1). We make a distinction between fixed schedules, where the criterion for selecting 
the hint can be 'evaluated' ahead of time (albeit time-invariant or time-varying, 
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deterministic or stochastic), and adaptive schedules, where the criterion depends on 
what happens as the algorithm runs. Here are some fixed and adaptive schedules: 

Simple Rotation: This is the simplest possible schedule that tries to balance 
between the hints. It is a fixed schedule that rotates between Ho, HI'···' HM. Thus, 
at step k, a batch of N examples of Hm is processed, where m = k mod (M + 1). 
This simple-minded algorithm tends to do well in situations where the Em's are 
somewhat similar. 

Weighted Rotation: This is the next step in fixed schedules that tries to give 
different emphasis to different Em's. The schedule rotates between the hints, visiting 
Hm with frequency Vm. The choice of the vm's can achieve balance by emphasizing 
the hints that are more important or harder to learn. 

Maximum Error: This is the simplest adaptive schedule that tries to achieve the 
same type of balance as simple rotation. At each step k, the algorithm processes 
the hint with the largest error Em. The algorithm uses estimates of the Em's to 
make its selection. 

Maximum Weighted Error: This is the adaptive counterpart to weighted rota­
tion. It selects the hint with the largest value of vmEm. The choice of the vm's can 
achieve balance by making up for disparities between the numerical ranges of the 
Em's. Again, the algorithm uses estimates of the Em's. 

Adaptive schedules attempt to answer the question: Given a set of values for the 
Em's, which hint is the most under-learned? The above schedules answer the ques­
tion by comparing the individual Em's. Althongh this works well in simple cases, 
it does not take into consideration the correlation between different hints. As we 
deal with more and more hints, the correlation between the Em's becomes more 
significant. This leads us to the final schedule that achieves the balance between 
the Em's through their relation to the actual error E. 

Adaptive Minimization: Given the estimates of Eo, EI , ... , EM, make M + 1 
estimates of E, each based on all but one of the hints: 

E(., Ell E2 ,···, EM) 
E(Eo,., E2,···, EM) 
E(Eo, EI,.,···, EM) 

E (Eo, EI , E2, ... , • ) 

and choose the hint for which the corresponding estimate is the smallest. 

In other words, E becomes the common thread between the Em's. Knowing that 
we are really trying to minimize E, and that the Em's are merely a vehicle to this 
end, the criterion for balancing the Em's should be based on what is happening to 
E as far as we can tell. 
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CONCLUSION 

This paper developed a systematic method for using different hints as input to 
the learning process, generalizing the case of invariance hints (Abu-Mostafa, 1990). 
The method treats all hints on equal footing, including the examples of the func­
tion. Hints are represented in a canonical way that is compatible with the common 
learning-from-examples paradigm. No restrictions are made on the learning model 
or the descent technique to be used. 

The hints are captured by the error measures Eo, El,"', EM, and the learning al­
gorithm attempts to simultaneously minimize these quantities. The simultaneous 
minimization of the Em's gives rise to the idea of balancing between the different 
hints. A number of algorithms that minimize the Em's while maintaining this bal­
ance were discussed in the paper. Adaptive schedules in particular are worth noting 
because they automatically compensate against many artifacts of the learning pro­
cess. 

It is worthwhile to distinguish between the quality of the hints and the quality of 
the learning algorithm that uses these hints. The quality of the hints is determined 
by how reliably one can predict that the actual error E will be close to zero for a 
given hypothesis based on the fact that Eo, E1 , ••• , EM are close to zero for that 
hypothesis. The quality of the algorithm is determined by how likely it is that the 
Em's will become nearly as small as they can be within a reasonable time. 
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