
A Method for Learning from Hints

Yaser s. Abu-Mostafa
Departments of Electrical Engineering, Computer Science,

and Computation and Neural Systems
California Institute of Technology

Pasadena, CA 91125
e-mail: yaser@caltech.edu

Abstract

We address the problem of learning an unknown function by
pu tting together several pieces of information (hints) that we know
about the function. We introduce a method that generalizes learn
ing from examples to learning from hints. A canonical representa
tion of hints is defined and illustrated for new types of hints. All
the hints are represented to the learning process by examples, and
examples of the function are treated on equal footing with the rest
of the hints. During learning, examples from different hints are
selected for processing according to a given schedule. We present
two types of schedules; fixed schedules that specify the relative em
phasis of each hint, and adaptive schedules that are based on how
well each hint has been learned so far. Our learning method is
compatible with any descent technique that we may choose to use.

1 INTRODUCTION

The use of hints is coming to the surface in a number of research communities dealing
with learning and adaptive systems. In the learning-from-examples paradigm, one
often has access not only to examples of the function, but also to a number of
hints (prior knowledge, or side information) about the function. The most common
difficulty in taking advantage of these hints is that they are heterogeneous and
cannot be easily integrated into the learning process. This paper is written with the
specific goal of addressing this problem. The paper develops a systematic method

73

74 Abu-Mostafa

for incorporating different hints in the usuallearning-from-examples process.

Without such a systematic method, one can still take advantage of certain types of
hints. For instance, one can implement an invariance hint by preprocessing the input
to achieve the invariance through normalization. Alternatively, one can structure
the learning model in a way that directly implements the invariance (Minsky and
Papert, 1969). Whenever direct implementation is feasible, the full benefit of the
hint is realized. This paper does not attempt to offer a superior alternative to
direct implementation. However, when direct implementation is not an option, we
prescribe a systematic method lor incorporating practically any hint in any descent
technique lor learning. The goal is to automate the use of hints in learning to a
degree where we can effectively utilize a large number of different hints that may
be available in a practical situation. As the use of hints becomes routine, we are
encouraged to exploit even the simplest observations that we may have about the
function we are trying to learn.

The notion of hints is quite general and it is worthwhile to formalize what we mean
by a hint as far as our method is concerned. Let I be the function that we are
trying to learn. A hint is a property that I is known to have. Thus, all that is
needed to qualify as a hint is to have a litmus test that I passes and that can be
applied to different functions. Formally, a hint is a given subset of functions that
includes I.
We start by introducing the basic nomenclature and notation. The environment X
is the set on which the function I is defined. The points in the environment are
distributed according to some probability distribution P. I takes on values from
some set Y

I:X-+Y

Often, Y is just {O, I} or the interval [0, 1]. The learning process takes pieces of
information about (the otherwise unknown) I as input and produces a hypothesis g

g:X-+Y

that attempts to approximate f. The degree to which a hypothesis g is considered
an approximation of I is measured by a distance or 'error'

E(g, !)

The error E is based on the disagreement between g and I as seen through the eyes
of the probability distribution P.

Two popular forms of the error measure are

E = Pr[g(x) =F f(x)]

and
E = £[(g(x) - l(x))2]

where Pr[.] denotes the probability of an event, and £[.J denotes the expected value
of a random variable. The underlying probability distribution is P. E will always
be a non-negative quantity, and we will take E(g,!) = ° t.o mean that 9 and I
are identical for all intents and purposes. We will also assume that when the set
of hypotheses is parameterized by real-valued parameters (e.g., the weights in the
case of a neural network), E will be well-behaved as a function of the parameters

A Method for Learning from Hints 75

(in order to allow for derivative-based descent techniques). We make the same
assumptions about the error measures that will be introduced in section 2 for the
hints.

In this paper, the 'pieces of information' about f that are input to the learning
process are more general than in the learning-from-examples paradigm. In that
paradigm, a number of points Xl, ... , X N are picked from X (usually independently
according to the probability distribution P) and the values of f on these points are
provided. Thus, the input to the learning process is the set of examples

(Xl, f(XI)),"', (XN' f(XN))

and these examples are used to guide the search for a good hypothesis. We will
consider the set of examples of f as only one of the available hints and denote it by
Ho. The other hints HI,' .. ,HM will be additional known facts about f, such as
invariance properties for instance.

The paper is organized as follows. Section 2 develops a canonical way for represent
ing different hints. This is the first step in dealing with any hint that we encounter
in a practical situation. Section 3 develops the basis for learning from hints and
describes our method, including specific learning schedules.

2 REPRESENTATION OF HINTS

As we discussed before, a hint Hm is defined by a litmus test that f satisfies and
that can be applied to the set of hypotheses. This definition of Hm can be extended
to a definition of 'approximation of Hm' in several ways. For instance, 9 can be
considered to approximate Hm within f. if there is a function h that strictly satisfies
H~ for which E(g, h) ::; f.. In the context of learning, it is essential to have a
notion of approximation since exact learning is seldom achievable. Our definitions
for approximating different hints will be part of the scheme for representing those
hints.

The first step in representing Hm is to choose a way of generating 'examples' of the
hint. For illustration, suppose that Hm asserts that

f: [-1,+1]- [-1,+1]

is an odd function. An example of Hm would have the form

f(-x) = -f(x)

for a particular X E [-1, +1]. To generate N examples of this hint, we generate
Xl,'" ,XN and assert for each Xn that f(-xn) = - f(xn). Suppose that we are
in the middle of a learning process, and that the current hypothesis is 9 when the
example f(-x) = - f(x) is presented. We wish to measure how much 9 disagrees
with this example. This leads to the second component of the representation, the
error measure em. For the oddness hint, em can be defined as

em = (g(x) + g(_x))2

so that em = 0 reflects total agreement with the example (i.e., g(-x) = -g(x)).
Once the disagreement between 9 and an example of Hm has been quantified

76 Abu-Mostafa

through em, the disagreement between 9 and Hm as a whole is automatically quan
tified through Em, where

Em = £(em)

The expected value is taken w.r.t. the probability rule for picking the examples.
Therefore, Em can be estimated by a.veraging em over a number of examples that
are independently picked.

The choice of representation of H m is not unique, and Em will depend on the form
of examples, the probability rule for picking the examples, and the error measure
em. A minimum requirement on Em is that it should be zero when E = O. This
requirement guarantees that a hypothesis for which E = 0 (perfect hypothesis) will
not be excluded by the condition Em = O.

Let us illustrate how to represent different types of hints. Perhaps the most common
type of hint is the invariance hint. This hint asserts that I(x) = I(x') for certain
pairs x, x'. For instance, "I is shift-invariant" is formalized by the pairs x, x' that
are shifted versions of each other. To represent the invariance hint, an invariant
pair (x, x') is picked as an example. The error associated with this example is

em = (g(x) - g(x'))2

Another related type of hint is the monotonicity hint (or inequality hint). The
hint asserts for certain pairs x, x' that I(x) :S I(x') . For instance, "I is mono
tonically nondecreasing in x" is formalized by all pairs x, x' such that x < x'. To
represent the monotonicity hint, an example (x, x') is picked, and the error associ
ated with this example is given by

_ {(g(x) - g(X'»2
em - 0

if g(x) > g(x')
if g(x) :S g(x')

The third type of hint we discuss here is the approximation hint. The hint
asserts for certain points x E X that I(x) E [ax, bx]. In other words, the value of 1
at x is known only approximately. The error associated with an example x of the
approximation hint is

if g(x) < ax
if g(x) > bx

if g(x) E [ax,bx]

Another type of hints arises when the learning model allows non-binary values for
9 where 1 itself is known to be binary. This gives rise to the binary hint. Let
X ~ X be the set where 1 is known to be binary (for Boolean functions, X is the
set of binary input vectors). The binary hint is represented by examples of the form
x, where x E X. The error function associated with an example x (assuming 0/1
binary convention, and assuming g(x) E [0, 1]) is

em = g(x)(l- g(x»

This choice of em forces it to be zero when g(x) is either 0 or 1, while it would be
positive if g(x) is between 0 and 1.

A Method for Learning from Hints 77

It is worth noting that the set of examples of f can be formally treated as a hint,
too. Given (Xl, f(xt)},···, (XN' f(XN)), the examples hint asserts that these are
the correct values of f at those particular points. Now, to generate an 'example' of
this hint, we pick a number n from I to N and use the corresponding (xn, f(xn)).
The error associated with this example is eo (we fix the convention that m = 0 for
the examples hint)

eo = (g(xn) - f(:c n))2

Assuming that the probability rule for picking n is uniform over {I,··· ,N},

1 N
Eo = E(eo) = N I)g(xn) - f(xn))2

n=l

In this case, Eo is also the best estimator of E = E[(g(x) - f(x))2] given Xl , ··· ,xN
that are independently picked according to the original probability distribution P .
This way of looking at the examples of f justifies their treatment exactly as one of
the hints, and underlines the distinction between E and Eo.

In a practical situation, we try to infer as many hints about f as the situation
will allow. Next , we represent each hint according to the scheme discussed in this
section. This leads to a list Ho, H l ,··· ,HM of hints that are ready to produce
examples upon the request of the learning algorithm. We now address how the
algorithm should pick and choose between these examples as it moves along.

3 LEARNING SCHEDULES

If the learning algorithm had complete information about f, it would search for a
hypothesis g for which E(g, f) = o. However, f being unknown means that the
point E = 0 cannot be directly identified. The most any learning algorithm can do
given the hints Ho, HI,··· ,HM is to reach a hypothesis g for which all the error
measures Eo, El, · ·· , EM are Zeros. Indeed, we have required that E = 0 implies
that Em = 0 for all m.

If that point is reached, regardless of how it is reached, the job is done. However, it
is seldom the case that we can reach the zero-error point because either (1) it does
not exist (i.e., no hypothesis can satisfy all the hints simultaneously, which implies
that no hypothesis can replicate f exactly), or (2) it is difficult to reach (Le., the
computing resources do not allow us to exhaustively search the space of hypotheses
looking for that point). In either case, we will have to settle for a point where the
Em's are 'as small as possible'.

How small should each Em be? A balance has to be struck, otherwise some Em's
may become very small at the expense of the others. This situation would mean
that some hints are over-learned while the others are under-learned. We will discuss
learning schedules that use different criteria for balancing between the hints. The
schedules are used by the learning algorithm to simultaneously minimize the Em's.
Let us start by exploring how simultaneous minimization of a number of quantities
is done in general.

Perhaps the most common approach is that of penalty functions (Wismer and Chat-

78 Abu-Mostafa

tel'gy, 1978). In order to minimize Eo, E 1 ,· •• ,EM, we minimize the penalty function

M

L am Em
m=O

where each am is a non-negative number that may be constant (exact penalty
function) or variable (sequential penalty function). Any descent technique can be
employed to minimize the penalty function once the am's are selected. The am's
are weights that reflect the relative emphasis or 'importance' of the corresponding
Em's. The choice of the weights is usually crucial to the quality of the solution.

Even if the am's are determined, we still do not have the explicit values of the Em's
in our case (recall that Em is the expected value of the error em on an example of
the hint). Instead, we will estimate Em by drawing several examples and averaging
their error. Suppose that we draw N m examples of Hm. The estimate for Em would
then be

1 Nm
_ ~ e(n)
Nm L- m

n=l

where e~) is the error on the nth example. Consider a batch of examples consisting
of No examples of Ho, Nl examples of HI, ... , and NM examples of HM. The
total error of this batch is

m=O n=l

If we take N m ex: am, this total error will be a proportional estimate of the penalty
function

M

L am Em
m=O

In effect, we translated the weights into a schedule, where different hints are em
phasized, not by magnifying their error, but by representing them with more exam
ples.

A batch of examples can be either a uniform batch that consist of N examples of
one hint at a time, or, more generally, a mixed batch where examples of different
hints are allowed within the same batch. If the descent technique is linear and the
learning rate is small, a schedule that uses mixed batches is equivalent to a schedule
that alternates between uniform batches (wit.h frequency equal to the frequency
of examples in the mixed batch). If we are using a nonlinear descent technique,
it is generally more difficult to ascertain a direct translation from mixed batches
to uniform batches, but there may be compelling heuristic correspondences. All
schedules discussed here are expressed in terms of uniform batches for simplicity.

The implementation of a given schedule goes as follows: (1) The algorithm decides
which hint (which m for m = 0,1,···, M) to work on next, according to some
criterion; (2) The algorithm then requests a batch of examples of this hint; (3) It
performs its descent on this batch; and (4) When it is done, it goes back to step
(1). We make a distinction between fixed schedules, where the criterion for selecting
the hint can be 'evaluated' ahead of time (albeit time-invariant or time-varying,

A Method for Learning from Hints 79

deterministic or stochastic), and adaptive schedules, where the criterion depends on
what happens as the algorithm runs. Here are some fixed and adaptive schedules:

Simple Rotation: This is the simplest possible schedule that tries to balance
between the hints. It is a fixed schedule that rotates between Ho, HI'···' HM. Thus,
at step k, a batch of N examples of Hm is processed, where m = k mod (M + 1).
This simple-minded algorithm tends to do well in situations where the Em's are
somewhat similar.

Weighted Rotation: This is the next step in fixed schedules that tries to give
different emphasis to different Em's. The schedule rotates between the hints, visiting
Hm with frequency Vm. The choice of the vm's can achieve balance by emphasizing
the hints that are more important or harder to learn.

Maximum Error: This is the simplest adaptive schedule that tries to achieve the
same type of balance as simple rotation. At each step k, the algorithm processes
the hint with the largest error Em. The algorithm uses estimates of the Em's to
make its selection.

Maximum Weighted Error: This is the adaptive counterpart to weighted rota
tion. It selects the hint with the largest value of vmEm. The choice of the vm's can
achieve balance by making up for disparities between the numerical ranges of the
Em's. Again, the algorithm uses estimates of the Em's.

Adaptive schedules attempt to answer the question: Given a set of values for the
Em's, which hint is the most under-learned? The above schedules answer the ques
tion by comparing the individual Em's. Althongh this works well in simple cases,
it does not take into consideration the correlation between different hints. As we
deal with more and more hints, the correlation between the Em's becomes more
significant. This leads us to the final schedule that achieves the balance between
the Em's through their relation to the actual error E.

Adaptive Minimization: Given the estimates of Eo, EI , ... , EM, make M + 1
estimates of E, each based on all but one of the hints:

E(., Ell E2 ,···, EM)
E(Eo,., E2,···, EM)
E(Eo, EI,.,···, EM)

E (Eo, EI , E2, ... , •)

and choose the hint for which the corresponding estimate is the smallest.

In other words, E becomes the common thread between the Em's. Knowing that
we are really trying to minimize E, and that the Em's are merely a vehicle to this
end, the criterion for balancing the Em's should be based on what is happening to
E as far as we can tell.

80 Abu-Mostafa

CONCLUSION

This paper developed a systematic method for using different hints as input to
the learning process, generalizing the case of invariance hints (Abu-Mostafa, 1990).
The method treats all hints on equal footing, including the examples of the func
tion. Hints are represented in a canonical way that is compatible with the common
learning-from-examples paradigm. No restrictions are made on the learning model
or the descent technique to be used.

The hints are captured by the error measures Eo, El,"', EM, and the learning al
gorithm attempts to simultaneously minimize these quantities. The simultaneous
minimization of the Em's gives rise to the idea of balancing between the different
hints. A number of algorithms that minimize the Em's while maintaining this bal
ance were discussed in the paper. Adaptive schedules in particular are worth noting
because they automatically compensate against many artifacts of the learning pro
cess.

It is worthwhile to distinguish between the quality of the hints and the quality of
the learning algorithm that uses these hints. The quality of the hints is determined
by how reliably one can predict that the actual error E will be close to zero for a
given hypothesis based on the fact that Eo, E1 , ••• , EM are close to zero for that
hypothesis. The quality of the algorithm is determined by how likely it is that the
Em's will become nearly as small as they can be within a reasonable time.

Acknowledgements

The author would like to thank Ms. Zehra Kok for her valuable input. This work
was supported by the AFOSR under grant number F49620-92-J-0398.

References

Abu-Mostafa, Y. S. (1990), Learning from hints in neural networks, Journal of
Complexity 6, 192-198.

AI-Mashouq, K. and Reed, 1. (1991), Including hints in training neural networks,
Neural Computation 3, 418-427.

Minsky, M. L. and Papert, S. A. (1969), "Perceptrons," MIT Press.

Omlin, C. and Giles, C. L. (1992), Training second-order recurrent neural networks
using hints, Machine Learning: Proceedings of the Ninth International Conference
(ML-92), D. Sleeman and P. Edwards (ed.), Morgan Kaufmann.

Suddarth, S. and Holden, A. (1991), Symbolic neural systems and the use of hints
for developing complex systems, International Journal of Machine Studies 35, p.
291.

Wismer, D. A. and Chattergy, R. (1978), "Introduction to Nonlinear Optimization,"
North Holland.

