
Monotonicity Hints

Joseph Sill
Computation and Neural Systems program

California Institute of Technology
email: joe@cs.caltech.edu

Abstract

Yaser S. Abu-Mostafa
EE and CS Deptartments

California Institute of Technology
email: yaser@cs.caltech.edu

A hint is any piece of side information about the target function to
be learned. We consider the monotonicity hint, which states that
the function to be learned is monotonic in some or all of the input
variables. The application of mono tonicity hints is demonstrated
on two real-world problems- a credit card application task, and a
problem in medical diagnosis. A measure of the monotonicity error
of a candidate function is defined and an objective function for the
enforcement of monotonicity is derived from Bayesian principles.
We report experimental results which show that using monotonicity
hints leads to a statistically significant improvement in performance
on both problems.

1 Introduction

Researchers in pattern recognition, statistics, and machine learning often draw
a contrast between linear models and nonlinear models such as neural networks.
Linear models make very strong assumptions about the function to be modelled,
whereas neural networks are said to make no such assumptions and can in principle
approximate any smooth function given enough hidden units. Between these two
extremes, there exists a frequently neglected middle ground of nonlinear models
which incorporate strong prior information and obey powerful constraints.

A monotonic model is one example which might occupy this middle area. Monotonic
models would be more flexible than linear models but still highly constrained. Many
applications arise in which there is good reason to believe the target function is
monotonic in some or all input variables. In screening credit card applicants, for
instance, one would expect that the probability of default decreases monotonically

Monotonicity Hints 635

with the applicant's salary. It would be very useful, therefore, to be able to constrain
a nonlinear model to obey monotonicity.

The general framework for incorporating prior information into learning is well
established and is known as learning from hints[l]. A hint is any piece of information
about the target function beyond the available input-output examples. Hints can
improve the performance oflearning models by reducing capacity without sacrificing
approximation ability [2]. Invariances in character recognition [3] and symmetries in
financial-market forecasting [4] are some of the hints which have proven beneficial in
real-world learning applications. This paper describes the first practical applications
of monotonicity hints. The method is tested on two noisy real-world problems: a
classification task concerned with credit card applications and a regression problem
in medical diagnosis.

Section II derives, from Bayesian principles, an appropriate objective function for
simultaneously enforcing monotonicity and fitting the data. Section III describes
the details and results of the experiments. Section IV analyzes the results and
discusses possible future work .

2 Bayesian Interpretation of Objective Function

Let x be a vector drawn from the input distribution and Xl be such that

\.I • ../... I
VJ T 1, Xj = Xj (1)

(2)

The statement that ! is monotonically increasing in input variable Xi means that
for all such x, x' defined as above

!(x/) ~ !(x) (3)

Decreasing monotonicity is defined similarly.

We wish to define a single scalar measure of the degree to which a particular can
didate function y obeys monotonicity in a set of input variables.

One such natural measure, the one used in the experiments in Section IV, is defined
in the following way: Let x be an input vector drawn from the input distribution.
Let i be the index of an input variable randomly chosen from a uniform distri
bution over those variables for which monotonicity holds. Define a perturbation
distribution, e.g., U[O,l], and draw ,sXi from this distribution. Define x' such that

\.I • ../... I
VJ T 1, Xj = Xj (4)

X~ = Xi + sgn(i),sXi (5)

636 J. Sill and Y. S. Abu-Mosta/a

where sgn(i) = 1 or -1 depending on whether f is monotonically increasing or
decreasing in variable i. We will call Eh the monotonicity error of y on the input
pair (x, x').

{o
Eh -- (y(x) - Y(X'))2

y(x') ;::: y(x)
y(x') < y(x) (6)

Our measure of y's violation of monotonicity is £[Eh], where the expectation is
taken with respect to random variables x, i and 8Xi .

We believe that the best possible approximation to f given the architecture used
is probably approximately monotonic. This belief may be quantified in a prior
distribution over the candidate functions implementable by the architecture:

(7)

This distribution represents the a priori probability density, or likelihood, assigned
to a candidate function with a given level of monotonicity error. The probability
that a function is the best possible approximation to f decreases exponentially
with the increase in monotonicity error.). is a positive constant which indicates
how strong our bias is towards monotonic functions.

In addition to obeying prior information, the model should fit the data well. For
classification problems, we take the network output y to represent the probability
of class c = 1 conditioned on the observation of the input vector (the two possible
classes are denoted by 0 and 1). We wish to pick the most probable model given the
data. Equivalently, we may choose to maximize log(P(modelldata)). Using Bayes'
Theorem,

log(P(modelldata)) ex log(P(datalmodel) + log(P(model)) (8)

M

= L: cmlog(Ym) + (1 - cm)log(l - Ym) -).£[Eh] (9)
m=l

For continuous-output regression problems, we interpret y as the conditional mean
of the observed output t given the observation of x . If we assume constant-variance
gaussian noise, then by the same reasoning as in the classification case, the objective
function to be maximized is :

M

- L (Ym - tm)2 -)'£[Eh] (10)
m=l

The Bayesian prior leads to a familiar form of objective function, with the first
term reflecting the desire to fit the data and a second term penalizing deviation
from mono tonicity.

Monotonicity Hints 637

3 Experimental Results

Both databases were obtained via FTP from the machine learning database
repository maintained by UC-Irvine 1.

The credit card task is to predict whether or not an applicant will default. For
each of 690 applicant case histories, the database contains 15 features describing
the applicant plus the class label indicating whether or not a default ultimately
occurred. The meaning of the features is confidential for proprietary reasons. Only
the 6 continuous features were used in the experiments reported here. 24 of the case
histories had at least one feature missing. These examples were omitted, leaving
666 which were used in the experiments. The two classes occur with almost equal
frequency; the split is 55%-45%.

Intuition suggests that the classification should be monotonic in the features. Al
though the specific meanings of the continuous features are not known, we assume
here that they represent various quantities such as salary, assets, debt, number of
years at current job, etc. Common sense dictates that the higher the salary or the
lower the debt, the less likely a default is, all else being equal. Monotonicity in all
features was therefore asserted.

The motivation in the medical diagnosis problem is to determine the extent to
which various blood tests are sensitive to disorders related to excessive drinking.
Specifically, the task is to predict the number of drinks a particular patient consumes
per day given the results of 5 blood tests. 345 patient histories were collected, each
consisting of the 5 test results and the daily number of drinks. The "number of
drinks" variable was normalized to have variance 1. This normalization makes the
results easier to interpret, since a trivial mean-squared-error performance of 1.0
may be obtained by simply predicting for mean number of drinks for each patient,
irrespective of the blood tests.

The justification for mono tonicity in this case is based on the idea that an abnormal
result for each test is indicative of excessive drinking, where abnormal means either
abnormally high or abnormally low.

In all experiments, batch-mode backpropagation with a simple adaptive learning
rate scheme was used 2. Several methods were tested. The performance of a lin
ear perceptron was observed for benchmark purposes. For the experiments using
nonlinear methods, a single hidden layer neural network with 6 hidden units and
direct input-output connections was used on the credit data; 3 hidden units and di
rect input-output connections were used for the liver task . The most basic method
tested was simply to train the network on all the training data and optimize the
objective function as much as possible. Another technique tried was to use a vali
dation set to avoid overfitting. Training for all of the above models was performed
by maximizing only the first term in the objective function, i.e., by maximizing the
log-likelihood of the data (minimizing training error). Finally, training the networks
with the monotonicity constraints was performed, using an approximation to (9)

lThey may be obtained as follows: ftp ics.uci.edu. cd pub/machine-Iearning-databases.
The credit data is in the subdirectory /credit-screening, while the liver data is in the
subdirectory /liver-disorders.

2If the previous iteration resulted in a increase in likelihood, the learning rate was
increased by 3%. If the likelihood decreased, the learning rate was cut in half

638 1. Sill and Y. S. Abu-Mostafa

and (10).

A leave-k-out procedure was used in order to get statistically significant compar
isons of the difference in performance. For each method, the data was randomly
partitioned 200 different ways (The split was 550 training, 116 test for the credit
data; 270 training and 75 test for the liver data). The results shown in Table 1 are
averages over the 200 different partitions.

In the early stopping experiments, the training set was further subdivided into a set
(450 for the credit data, 200 for the liver data) used for direct training and a second
validation set (100 for the credit data, 70 for the liver data). The classification
error on the validation set was monitored over the entire course of training, and the
values of the network weights at the point of lowest validation error were chosen as
the final values.

The process of training the networks with the monotonicity hints was divided into
two stages. Since the meanings of the features were unaccessible, the directions
of mono tonicity were not known a priori. These directions were determined by
training a linear percept ron on the training data for 300 iterations and observing
the resulting weights. A positive weight was taken to imply increasing monotonicity,
while a negative weight meant decreasing monotonicity.

Once the directions of mono tonicity were determined, the networks were trained
with the monotonicity hints. For the credit problem, an approximation to the
theoretical objective function (10) was maximized:

(13)

For the liver problem, objective function (12) was approximated by

(14)

Eh,n represents the network's monotonicityerror on a particular pair of input vec
tors x, x'. Each pair was generated according to the method described in Section II.
The input distribution was modelled as a joint gaussian with a covariance matrix
estimated from the training data.

For each input variable, 500 pairs of vectors representing monotonicity in that vari
able were generated. This yielded a total of N=3000 hint example pairs for the
credit problem and N=2500 pairs for the liver problem. A was chosen to be 5000.
No optimization of A was attempted; 5000 was chosen somewhat arbitrarily as
simply a high value which would greatly penalize non-monotonicity. Hint general
ization, i.e. monotonicity test error, was measured by using 100 pairs of vectors for
each variable which were not trained on but whose mono tonicity error was calcu
lated. For contrast, monotonicity test error was also monitored for the two-layer
networks trained only on the input-output examples. Figure 1 shows test error and
monotonicity error vs. training time for the credit data for the networks trained
only on the training data (i.e, no hints), averaged over the 200 different data splits.

Monotonicity Hints 639

..
o

Test Error and Monotonicity Error vs. Iteration Number
0 . 3 r---~-----r----~----r---~-----r----~----r---~----~

0.25

0 . 2

"testcurve.data" 0
·'hintcurve.data" +

t

~~~--------------~ ~ 

.. 0.15 
~ 

0 . 1 

0.05 

500 1000 1500 2000 2500 3000 
Iteration Number 

3500 4000 4500 5000 

Figure 1: The violation of monotonicity tracks the overfitting occurring during 
training 

The monotonicity error is multiplied by a factor of 10 in the figure to make it more 
easily visible. The figure indicates a substantial correlation between overfitting and 
monotonicity error during the course of training. The curves for the liver data look 
similar but are omitted due to space considerations. 

Method training error test error hint test error 
Linear 22.7%± 0.1% 23.7%±0.2% -

6-6-1 net 15.2%± 0.1% 24.6% ± 0.3% .005115 
6-6-1 net, w/val. 18.8%± 0.2% 23.4% ± 0.3% -
6-6-1 net, w /hint 18.7%±0.1% 21.8% ± 0.2% .000020 

Table 1: Performance of methods on credit problem 

The performance of each method is shown in tables 1 and 2. Without early stopping, 
the two-layer network overfits and performs worse than a linear model. Even with 
early stopping, the performance of the linear model and the two-layer network are 
almost the same; the difference is not statistically significant. This similarity in per
formance is consistent with the thesis of a monotonic target function. A monotonic 
classifier may be thought of as a mildly nonlinear generalization of a linear classifier. 
The two-layer network does have the advantage of being able to implement some 
of this nonlinearity. However, this advantage is cancelled out (and in other cases 
could be outweighed) by the overfitting resulting from excessive and unnecessary 
degrees of freedom. When monotonicity hints are introduced, much of this unnec
essary freedom is eliminated, although the network is still allowed to implement 
monotonic nonlinearities. Accordingly, a modest but clearly statistically significant 
improvement on the credit problem (nearly 2%) results from the introduction of 



640 J. Sill and Y. S. Abu-Mosta/a 

Method training error test error hint test error 
Linear .802 ± .005 .873 ± .013 -

5-3-1 net .640 ± .003 .920 ± .014 .004967 
5-3-1 net, w/val. .758 ± .008 .871 ± .013 -

5-3-1 net, w/hint .758± .003 .830 ± .013 .000002 

Table 2: Performance of methods on liver problem 

monotonicity hints. Such an improvement could translate into a substantial in
crease in profit for a bank. Monotonicity hints also significantly improve test error 
on the liver problem; 4% more of the target variance is explained. 

4 Conclusion 

This paper has shown that monotonicity hints can significantly improve the 
performance of a neural network on two noisy real-world tasks. It is worthwhile 
to note that the beneficial effect of imposing monotonicity does not necessarily 
imply that the target function is entirely monotonic. If there exist some non
monotonicities in the target function, then monotonicity hints may result in some 
decrease in the model's ability to implement this function. It may be, though, that 
this penalty is outweighed by the improved estimation of model parameters due to 
the decrease in model complexity. Therefore, the use of monotonicity hints probably 
should be considered in cases where the target function is thought to be at least 
roughly monotonic and the training examples are limited in number and noisy. 

Future work may include the application of monotonicity hints to other real world 
problems and further investigations into techniques for enforcing the hints. 

Aclmowledgements 

The authors thank Eric Bax, Zehra Cataltepe, Malik Magdon-Ismail, and Xubo 
Song for many useful discussions. 

References 

[1] Y. Abu-Mostafa (1990). Learning from Hints in Neural Networks Journal of 
Complexity 6, 192-198. 

[2] Y. Abu-Mostafa (1993) Hints and the VC Dimension Neural Computation 4, 
278-288 

[3] P. Simard, Y. LeCun & J Denker (1993) Efficient Pattern Recognition Using a 
New Transformation Distance NIPS5, 50-58 . 

[4] Y. Abu-Mostafa (1995) Financial Market Applications of Learning from Hints 
Neural Networks in the Capital Markets, A. Refenes, ed., 221-232. Wiley, London, 
UK. 


