
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 4, JULY 1986 513

The Complexity o f Information Extraction
YASER S. ABU-MOSTAFA

This paper is dedicated to the memory of Herbert J. Ryser.

Abstract-How difficult are decision problems based on natural data,
such as pattern recognition? To answer this question, decision problems
are characterized by introducing four measures defined on a Boolean
function f of N variables: the implementation cost C(f), the randomness
R(f), the deterministic entropy H(f), and the complexity K(f). The
highlights and main results are roughly as follows. 1) C(f) = R(f) =
H(f) = K(f), all measured in bits. 2) Decision problems based on natural
data are partially random (in the Kolmogorov sense) and have low entropy
with respect to their dimensionality, and the relations between the four
measures translate to lower and upper bounds on the cost of solving these
problems. 3) Allowing small errors in the implementation of f saves a lot
in the low entropy case but saves nothing in the high-entropy case. If f is
partially structured, the implementation cost is reduced substantially.

I. INTRODUCTION

T HE ACCESSIBILITY of available information is the
central issue in decision-making based on natural

data. In a typical pattern recognition problem, for exam-
ple, we have more than enough information to make the
correct decision, but this is precluded by the high complex-
ity of extracting the right bits of information from the
data.

Pattern recognition problems are unique in their compu-
tational demands. In contrast with the structured nature of
the problems in computational complexity, the problems
which are based on “natural” data are inherently random,
that is, so unstructured that they have no concise effective
definition. An algorithm that tells us whether or not there
is a tree in a given picture contains, at least implicity, the
lengthy definition of the object tree. The purpose of this
work is to define and study the complexity of solving
decision problems of random nature.

To do so, we define four parameters to measure the
complexity in the same way we measure the information.
In terms of these parameters, we address questions like:
What is the cost of solving a high-complexity problem?
Should we hope to find a tricky algorithm or a compact
system to solve such a problem with low cost? What is the
impact of the dimensionality of the problem? How signifi-
cant is the partial structure of a problem in reducing its
complexity? Is there a system that is capable of solving a
wide class of problems optimally? These questions and
their answers are the core of this work.

A. Main Results

Although the definitions and relations are motivated by
decision problems, the results can be stated entirely in the
context of the complexity of Boolean functions. We can
summarize our approach as follows. We characterize a
Boolean function f by four measures C(f), R(f),
H(f), K(f). The values of these measures are normalized
to range approximately from 0 to N bits for a function of
N variables. Roughly speaking, C(f) measures the cost of
implementing f based on memory devices (related to
combinational complexity [15], [23], [25]), R(f) measures
the randomness or lack of structure in f (based on the
Kolmogorov-Chait in complexity [S], [13]), H(f) measures
the entropy or essential dimensionality of the independent
variables of f (related to Shannon’s entropy [24]), and
K(f) measures the rank of f among all Boolean functions
as far as simple decomposit ion is concerned (based on
compositional complexity [2]). An important preliminary
result about these measures is that they share the common
distribution of F ig. 1, so that approximately 22k functions
have the value of each measure in the neighborhood of K
bits.

The ma in results of the paper are the pairwise relations
between the four measures C, H, R, and K and the
interpretation of these relations. The convenience of hav-
ing these four measures on the same scale makes the form
of these relations surprisingly simple. All of them point in
one direction; the values of these completely different
measures are practically the same. More accurately, we
have 12 inequalities:

R(f) 5 K(f) + o(N),

K(f) s R(f > + o(N),

H(f) 5 K(f) + o(N),

K(f) 5 H(f > + o(N),

C(f) 5 K(f) + o@‘%

K(f) 5 C(f) + o(N),

H(f) 5 R(f) + o(N),

R(f > 5 H(f) + o(N),

for all f

for almost all f

for almost all, but not all, f

for almost all f

for all f

for almost all f

for almost all, but not all f

for all f

C(f) s R(f) + o(N), for almost all f
Manuscript received August 8, 1984; revised October 23, 1985. This R(f) 5 C(f) + o(N), for ali f

paper was presented in part at the IEEE International Symposium on
Information Theory, Brighton, England, June 1985. C(f) 5 H(f) + o(N), for all f

The author is with the Departments of Electrical Engineering and
Computer Science, 116-81, California Institute of Technology, Pasadena, H(f) 5 C(f) + o(N), for almost all, but not all f.
CA 91125, U.S.A.

IEEE Log Number 8608098. In these relations, o(N) is some positive function of N

001%9448/86/0700-0513$01.00 01986 IEEE

514 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 4, JULY 1986

/

Simple Complex
Functions Functions

\-)
0 K N

--cl+
Otlog N)

Fig. 1. Common distribution of four measures.

which is asymptotically negligible with respect to N (mostly
of the order log N), and “almost all” means all but an
asymptotically negligible fraction. The exact statements
are given in Section III. The proofs are based on enumera-
tion arguments, explicit constructions, and simulation
techniques.

B. Previous Work

Among the several approaches for defining complexity,
[2], [25], and [26] had the most relevant notions. The
complexity and cost models were inspired by [l] and [19],
and by the relations between time and circuit complexity
(e.g., [6]). The key to the characterization of randomness is
provided in [8] and [13]. Some background textbooks are
[14] and [22] for combinatorial methods, [9] for pattern
recognition, [lo] and [17] for information theory, [12] and
[19] for digital logic, and [5] and [23] for computational
complexity. See [3] for many related results.

Previous work on compositional complexity of Boolean
functions [2] gives a complexity definition close to K(f)
and proves some of the basic properties of what we call
normal-form input configurations. What is new here is the
uniform definition of K(f) for any number of variables on
a bit scale, the distribution of K(f), and the relation to
implementation cost (combinational complexity). Previous
work on combinational complexity of Boolean functions
[15], [25] can be translated in terms of C(f) as C(f) = N
- o(N) for almost all f. What is new here is the estima-
tion of how many functions have a certain value for C(f)
over the whole range from 0 to N. The work of Pippenger
[21] implicitly incorporates the notions of deterministic
entropy and approximation, and the relations between
C(f) and H(f) and between C(f) and C,(f) can be
derived as corollaries of his main theorem. What is new
here is the derivation of similar results for K(f) and
R(f). Previous definitions of the Turing complexity of
Boolean functions [23] are different from the definition of
R(f)-

C. Outline

Section II contains the preliminary definitions and prop-
erties used in the rest of the paper, especially in connection
with the complexity measure K(f). The main results are in
Section III, where the four measures are defined and
related, and their relations are interpreted. Section IV
discusses the complexity in a probabilistic context, where
small computational errors are allowed. Finally, false en-
tropy is introduced in Section V to characterize the partial
structure of practical problems.

Lemmas are stated and proved in the appendices and
are used technically in other proofs. Propositions are inter-
mediate results about the notions of this paper and are
used in the proofs of the theorems. They are stated in the
text and proved in the appendices. The three theorems are
the main results, and they are stated and proved in the
text. While Theorem 1 relates K(f) to C(f), the other
pairwise relations are contained in the discussion in Sec-
tions III-D and III-E as they follow the same line of
argument.

D. Notation

Bits are used as the units throughout this work, and all
logarithms (log) and exponent&& (exp) are to the base 2.
As usual, 1 K] stands for the largest integer less than or
equal to K, while [K 1 stands for the smallest integer
greater than or equal to K.

We shall use the notion of a multiset, which is a collec-
tion of objects where repetition is allowed and the order
does not matter. The objects are called the components of
the multiset, and the number of times a certain object
appears in the multiset is called its multiplicity. The multi-
set is denoted by listing its components enclosed in (.).
If A and B are multisets, then the union AUB is the
multiset formed by all the objects of A and B, with the
sum multiplicities.

As in most asymptotic results, an error term exists,
denoted by o(N). A statement involving this symbol
will be interpreted as follows: a function n from natural
numbers to natural numbers exists, satisfying
lim N4,(n(W/N) = 0, and it will make the statement
true when substituted for o(N).

II. THE NORMAL FORM

This section is devoted to the development of the basic
notions and relations used in the definition of the com-
plexity and cost measures in the next section.

A. Boolean Functions

Here, we set up the notion of Boolean function in a
formal way that excludes the redundancy encountered in
the standard definition of a function. For example, if f is a
Boolean function of one variable and g is a Boolean
function of two variables such that their values are always
1 (constant functions), the two functions are formally
different because their domains are different, but they are
the same “function” in our definition. Furthermore, our
definition makes the distinction between functions in the
sense of operators which take a point in the domain to a
point in the range and functions which represent Boolean
variables that are dependent on a set of independent
Boolean variables.

Let n be a positive integer. A Boolean mapping on n,
denoted by f,(.), is a mapping from (0, l}” (the set of all
binary n-tuples) to (0, l}. The mapping f,(.) is an oper-
ator which takes an n-tuple of O’s and l’s as an argument
and produces 0 or 1 according to some specific rule.

ABU-MOSTAFA: INFORMATION EXTRACTION 515

Let U be a universal set of independent Boolean vari-
ables assuming the values 0 or 1 only. The cardinality of ZJ
is potentially infinite. We refer to any specific assignment
of O’s and l’s to all Boolean variables in CT as the state of
the system. Let S = { si,. . 3, sN} be any nonempty finite
subset of U for some positive integer N. A Booleun
mapping on S, denoted by fs (without further arguments),
is a mapp ing from (0, l}” (the set of all binary N-tuples
indexed by the elements of S) to (0, 1). The Boolean
mapp ing fs defines a dependent Boolean variables whose
value is determined by the values of the independent
variables in S. In contrast to the Boolean mapp ing f,(.)
on an integer n, the value of fs is determined by the state
of the system.

For a fixed S of cardinality N, there are 2N possible
assignments of O’s and l’s to the Boolean variables in S;
hence there are 22N different Boolean mapp ings fs. The set
of all Boolean mapp ings fs on a set S for all choices of S
(finite nonempty subsets of U) is denoted by M . The
cardinality of M is potentially infinite. Some elements of
M are equivalent in the sense that for all possible assign-
ments of O’s and l’s to their independent Boolean vari-
ables, they always assume the same value. This will happen
when fs is actually independent of some of the Boolean
variables in S. We want to merge (identify) these map-
pings into one entity.

Definition: The relation = is defined on M as follows:
gsl = hs* if, and only if, for all states of the system, the
values of gsl and hsz are the same.

Clearly, = is an equivalence relation; hence it induces a
partition of M into equivalence classes. Each equivalence
class is a set of all Boolean mapp ings like gsl and hsz that
are mutually equivalent (related by =). We identify each
equivalence class as an object and introduce the following
definition.

Definition: A Boolean function f is an equivalence class
of the relation = on M. The set of all Boolean functions
is denoted by F.

Notice that any Boolan function f depends on a finite
number of Boolean variables in U, because the definition
of Boolean mapp ings on S applies only to finite sets. The
smallest set of variables on which a Boolean function
depends is of special interest.

Definition: The support of a Boolean function f, de-
noted by T(f), is the intersection of all sets S for which
some Boolean mapp ing g, belongs to (the equivalence
class) f. The rank of f, denoted by r(f), is the cardinality
of its support, r(f) = IT(f)I.

We shall adopt the usual liberal notation in the context
of equivalence classes and treat f as an actual function
rather than a set of equivalent Boolean mapp ings whenever
no confusion as to what is meant can arise. We shall also
refer to the value of f simply by f. We start by saying that
only the constant functions f = 0 and f = 1 have empty
support T(f) = Cp (zero rank, r(f) = 0). If S is a subset
of U with cardinal&y N, the number of Boolean functions
whose supports are subsets of S is 22N, whereas the number
of Boolean functions of support S is, by the principle of

inclusion and exclusion, C,“-,Cf)(- l)N-r 22r. On the
other hand, the number of Boolean functions which de-
pend on N variables, that is, whose rank is N, is poten-
tially infinite.

B. Configurations

Proposing a valid and useful measure of complexity
involves two considerations from theory and practice that
are often conflicting. From a practical point of view, a
function whose complexity measure is large must require a
costly implementation. However, from a theoretical point
of view, a measure of inherent complexity should be
essentially independent of any specific implementation de-
vices that may be available. A significant definition of
complexity must capture both aspects. We introduce the
components of our complexity measure here, but the full
justification of the definition is reflected in the theorems of
the following sections.

Our building blocks are n-input “universal gates,” for
example, programmable devices [19, sec. 2.121 such as a
programmable read-only memory (PROM) with n address
lines and one data line. Although any function of n
variables can be simulated by this universal gate, the cost
of implementing such a gate (in terms of the number of
standard switching devices or the number of memory
locations) is exponential in the number of inputs. Many
functions of n variables can be simulated using less power-,
ful devices of n inputs or several smaller universal gates
interconnected together. The normal form (Fig. 2) is the
simplest way of breaking down a function in this manner.
It consists of ,a first stage of (primary) universal gates
which take their inputs directly from the input Boolean
variables and a second stage with one (secondary) univer-
sal gate which takes the outputs of the primary gates and
produces the function being simulated. A normal form can
be thought of as an interconnection of devices analogous
to the disjunctive or conjunctive normal form [12] where
the AND'S and OR'S are now replaced by universal gates. It
also resembles the standard system of pattern recognition
where the classification decision is based on a number of
features that are extracted from the inputs. This suggests
the following terminology.

Fig. 2. Normal form.

Nomenclature: In the normal form, the universal gates
of the first stage are called the primary gates or feature
extractors, and the Boolean mapp ings they simulate are

516 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 4, JULY 1986

called primary functions of features, denoted by F’s. The
universal gate of the final stage is called the secondary gate
or classifier, and the Boolean mapping it simulates is
called the secondary function or classification decision,
denoted by D.

Hence the normal form is a simple decomposition of the
function in question into a global classification decision
based on local extracted features. The normal form struc-
ture is based on support systems which were introduced in
the context of local and global computation [l]. We now
give the definition of configurations that formalizes this
structure.

Definition: A normal-form input configuration (or simply
a configuration) C is a finite multiset of finite nonempty
subsets of U, C = (S,, . . . , S,). The S, are called the
components of the configuration C. The support of C,
denoted by T(C), is defined as U,“=,S, (all Boolean varia-
bles which appear in any component of the configuration).
The cardinality of the support is called the rank of C,
denoted by r(C) (dimensionality of the space of Boolean
variables in the configuration). The length of C, denoted
by l(C) = L, is the number of (not necessarily distinct)
components of the multiset. The degree of C, denoted by
d(C), is the maximum cardinality n, = ISi] of a component
S, in C (zero for the empty configuration).

Notice that the configuration (the multiset) can be empty,
but if it has components, none of these components can be
empty. Also, nothing infinite is allowed in a configuration.
For each i = l;.., L, the nj Boolean variables in S, will
be the inputs to one of L primary gates. The outputs of
these L gates are then input to the secondary gate whose
output becomes the overall simulated function.

Definition: A nonempty configuration C = (S,, . . . , S,)
is said to admit a Boolean function f if there exist Boolean
mappings Fs’,, . . . , Fs”, on the subsets S,, . . . , S, of U (the
superscript distinguishes between the F’s) and a Boolean
mapping DL(.) on the integer L such that, for all states of
the system, f = DL(Fs’,, . + . , Fst.). The empty configuration
admits the constant functions only.

A function admitted by a configuration is one that can
be simulated using a normal form with the inputs specified
by the configuration. Since the configuration is defined as
a multiset, configurations will be equal if and only if they
have the same components (with the same multiplicities).
However, some unequal configurations are functionally the
same.

Definition: The set of all Boolean functions f admitted
by a configuration C is denoted by F(C). Two configura-
tions C, and C, are equivalent if they admit the same
functions, that is, if F(C,) = i;(C,). The number of func-
tions admitted by C is denoted by N(C)(= IF(C)

We observe immediately that the support T(f) of a
function admitted by a configuration must be a subset of
the support of the configuration T(C). The set F(C)
contains all Boolean functions that can be simulated on a
normal form using the input configuration C. The number
of functions N(C) admitted by a configuration C ex-
presses the power of C. Notice that each function is

counted as a single vote regardless of its “complexity.”
Since the gates of the normal form are universal, the
configuration that admits an inherently complex function
will be powerful enough to admit a large number of
simpler functions, and N(C) will be indeed large. This
would not hold if the building blocks were special-purpose
devices. We now develop some relations between the
different parameters of the configuration as well as some
structural properties.

C. Properties of Configurations

The parameters of a configuration C are interrelated.
The following proposition describes several bounds on
N(C), the number of functions admitted by C, in terms of
the length, degree, and rank of C. These bounds will prove
vital in estimating the complexity of Boolean functions in
the next section and will provide insight into the nature of
configurations.

Proposition I: Let C = (S,, . * . , S,) be a configuration
which admits N(C) Boolean functions. Let r(C), I(C)
(= L), d(C) be the rank, length, and degree of C, respec-
tively. Then, a) d(C) I log log N(C) _< max (l(C), d(C))
+ log(max(l(C), d(C)) + 1); b) Jy(c)< loglog N(C)
I r(C).

Notice that max (Z(C), d(C)) has the interpretation of
being the maximum number of inputs in any gate of the
configuration. The observation here is that 22n is a
tremendously increasing function of n which makes N(C)
essentially depend only on the size of the largest gate in
the configuration and nothing else. Also, if a configuration
C has r(C) variables, then no matter how these variables
are distributed on different components, the size of one of
the gates (possible the secondary one) must be at least
Jyo.

Although the configuration is just a multiset of subsets,
it has the functional interpretation of simulating Boolean
functions on normal forms. This makes configurations
distinct from hypergraphs, for example. We shall use this
fact to characterize configurations in a way similar to [2].

Definition: A configuration C = (S,, . . ., S,) is redun-
dant if one of the S, can be omitted without diminishing
F’(C)-

This definition means that a redundant configuration is
one which has an unnecessary gate among its primary
gates. For example, it is easy to show that { si, s2} can be
omitted from C = ({ si, s2}, { si, s2, ss}) without di-
minishing F(C). The following proposition describes non-
redundant configurations.

Proposition 2: If a configuration C = (S,, . . . , S,) is
not redundant, then for all subsets X of (1,. . +, L}, the
following condition holds:

b I si 2 IXI.
‘icX ’

Proposition 2 says that if several components of the
configuration have only a few variables between them,
then these variables must be overrepresented, and some of
these components may be omitted without damaging the

ABU-MOSTAFA: INFORMATION EXTRACTION 517

’ information passed on to the secondary gate about the
variables. This result is used in proving that the configura-
tion does not have to be very long and hence in estimating
the number of distinct configurations.

Proposition 3: a) If C is a configuration with I(C), >
r(C), then a configuration C* with l(C*) 5 r(C*) exists
which is equivalent to C. b) Let S be an N-subset of the
universal set U. There are at most 2N2 possible values for
P(C) over all configurations C whose support T(C) is a
subset of S.

Proposition 3 shows that we only need to consider a
finite and relatively small set of configurations for any
finite support. Since all N-sets are isomorphic, we con-
clude that the number of different values for N(C) for all
configurations C of rank Nor less is at most 2N2, which is
far less (for large N) than the conceivably possible 22N + 1
values. We are now in a position to define complexity in
terms of normal-form input configurations.

III. FOUR MEASURES

In this section, we introduce four measures defined on
Boolean functions: the complexity K(f), the cost C(f),
the randomness R(f), and the entropy H(f). We derive
and interpret the pairwise relations between these mea-
sures.

A. Complexity

Suppose we have a number of objects which possess a
certain property to different degrees. We want to give a
quantitative measure of how much the object X possesses
this property. The most obvious way to do so is to intro-
duce some ordering of these objects according to how
much they possess the property, then define the measure
for X to be the number of objects which possess the
property to a lesser degree than X itself. We call this a
comparative approach.

To apply comparat iveness to define a measure for the
complexity of Boolean functions, we need to order these
functions according to their complexity. The notion of
reducibility is a natural way of comparing the complexity
of two procedures. If procedure A can be carried out by
transforming it in a simple way to procedure B and then
carrying out the procedure B instead, A cannot be more
complex than B. In our case, we use admittance to config-
urations as a basis for reducibility, which resembles other
forms of reducibility such as projection [26]. A similar
approach was introduced in [2]. The point is that if we take
the smallest configuration C that simulates a Boolean
function f, then the other functions admitted by C are
reducible to f since they can be simulated by the smallest
structure that simulates f.

Definition: The comparative normal-form complexity (or
simply the complexity) of a Boolean function f, denoted
by K(f), is defined by

K(f) = loglogmin{N(C)]Cadmitsf}.

The units of K(f) are bits.

We first dispose of the log log as being a scale down for
N(C) which is typically of the form 22K. The definition
says that we consider all configurations C that admit the
function f, choose the m inimal configuration with respect
to the number of functions it admits, and take this number
as a measure for the complexity of f. Since N(C) 2 2 for
all configurations, taking the logarithm twice is valid and
K(f) 2 0 (with equality if and only if, f is a constant
function). Also, K(f) I N for any function f which
depends on N variables, since f must be admitted to. a
configuration C whose support consists of these N vari-
ables only and hence has N(C) I 22N. Notice that the
normal form served as a “catalyst” in the definition of
complexity.

Example: Let f = S, $ S, CB * * . CBS, where @ de-
notes the modu lo-two sum. It is easy to show that f is of
complexity o(N) by constructing a configuration that ad-
m its it which has all of its gates with approximately fi
inputs where each gate simulates the modu lo-two sum.
Notice that this simple function requires maximal disjunc-
tive and conjunctive normal forms [12].

One of the “health” properties of any complexity mea-
sure is that it should resolve different levels of complexity.
The following proposition estimates the number of func-
tions at different levels of complexity.

Proposition 4: Let 1;s be the set of all Boolean func-
tions f whose support is a subset of nonempty N-set S.
Define NK =]{ f E F’lK(f) 1. K}I. For 0 I K I N, we
have

K- 1 I loglogN,< K+ 210gN.

This means that NK is approximately 22K functions
(with respect to K with an error of + o(N)). Although NK
is the total number of functions whose complexity is at
most K, almost all of these functions are very close to K
on the complexity scale. This is because 22K - 22K-‘N is
approximately 22K, where z is arbitrarily small and N is
sufficiently large. Hence the number of functions whose
complexity is between K - CN and K is approximately
22K.

B. Cost

To have practical significance, the complexity measure
K(f) should be related to the cost of implementing f. We
start by defining the cost.

Definition: The (denormalized) cost of a universal gate
of n inputs (n 2 0) is defined to be 2” “cells.” The cost of
an interconnection is zero cells. The cost of a collection of
gates and interconnections is the sum of the costs of the
components.

This definition is motivated by the actual number of
cells in an integrated-circuit PROM, and by the fact that
implementing an n-input universal gate requires an ex-
ponential number of standard gates. Notice that, in prac-
tice, an interconnection has a nonzero cost. However, this
fact can only strengthen the ma in results to be proved
shortly.

518 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. ~~-32, NO. 4, JULY 1986

A normal form whose primary gates have n,, . . . , nL
inputs costs 2L + Cf=,2”~ cells (the secondary gate has L
inputs). For example, the normal form corresponding to
the empty configuration has L = 0 and costs 1 cell. We
now show that the cost of normal form implementation of
a function f is directly related to the complexity K(f).

Proposition 5: Let f be a Boolean function of a com-
plexity K(f) = K. Then, a) any normal form implementa-
tion of f costs at least 2K cells, and b) there is a normal
form implementation of f which costs at most 2K+10s(1+K)
cells.

This relation between the complexity of f and the cost
of its normal form enables us to think of K(f) as the cost
of this restricted implementation of f. To contrast this
with the unrestricted implementation, we introduce a nor-
malized version of combinational complexity.

A collection of Q universal gates (Fig. 3(a)) with
nl; * 0) nQ inputs costs Cy=‘=,2”!1 cells. We use these gates
together with the input lines si, * * *, sN to build a combina-
tional circuit l? to simulate a given function. A combina-
tion circuit (Fig. 3(b)) is an unrestricted loop-free intercon-
nection of gates (with unlimited fan-out). l? simulates f if
f is one of the gate outputs y,, * . . , ye in I.

&htJ

(a)

Sl sN

(b)
Fig. 3. (a) Collection of Q universal gates. (b) Combinational circuit

made out of gates in (a).

Definition: The (normalized) cost of a Boolean function
f, denoted by C(f), is defined by

C(f) =logmin{costof I?:Isimulatesf}.
The units of C(f) are bits.

A constant function f is the output of a universal gate
with zero inputs. Such a gate costs 2’ = 1 cell. Hence
C(f) = 0 bits for the two constant functions, and C(f) >
0 for all other functions. Also, C(f) I N for any function
f which depends on N variables, since a universal gate
with N inputs (2N cells) can simulate any such function.
This normalization of cost simplifies the form of the
relations to be derived and emphasizes the order of magni-
tude of the cost. Notice that C(f) differs by at most a
constant from the normalized cost based on any other
complete basis of switching devices such as two-input

NAND gates. To see this, one can simulate universal gates
using the complete basis and vice versa.

Although C(f) is based on the cost of an unrestricted
circuit that simulates f without assigning any cost to the
design of the circuit or its wiring, the distribution of C(f)
is very close to that of K(f), which was based on a very
structured circuit. This distribution, estimated in the fol-
lowing proposition, is a key factor in relating C(f) to
K(f >-

Proposition 6: Let Fs be the set of all Boolean func-
tions f whose support is a subset of a nonempty N-set S.
Define NK =]{ f E I;,IC(f) I K}J. For 0 I K I N, we
have

The situation is similar to Proposition 4. Again, the
number of functions whose cost is between K - CN and K
is approximately 22K (with respect to K with an error of
f o(N)). A corollary of Proposition 6 is that almost all
functions of N variables have C(f) 2 N - o(N), which is
a known result (e.g., in [25]).

C. Complexity Versus Cost

The contrast between the definitions of complexity and
cost is clear: K(f) is based on the theoretical principles of
reducibility and comparativeness applied to the simplest
decomposition of f, while C(f) is based on the actual cost
in the most general decomposition of f. However, these
two quantities turn out to be closely related. Inherent
complexity is to implementation cost what mass is to
weight, an intrinsic property that is different from, but
directly related to, a practical impact.

Theorem 1: Given E > 0, a positive integer No exists
such that for any Boolean function f whose support is a
subset of a fixed N-set S, where N 2 No, and for 0 I K I
(1 - e)N, the following holds. a) If K(f) = K, then C(f)
I K + cN bits. b) The fraction of functions f in the
complexity range K I K(f) I K + e N which have C(f)
I K is less than 6.

Proof: We shall use Propositions 4, 5, and 6. a) From
Proposition 5, a normal form implementation of f exists
which costs at most 2K+10g(1+K) cells. Taking N large
enough, c N will be greater than log (1 + K) since K I N,
and the result follows by taking the logarithm.

b) From Proposition 4, we have the following estimates:
NK I exp 2K’2 log N and NK+rN 2 exp 2KfZN-1. Therefore,
taking N large enough, the number of functions whose
complexity is between K and K + eN is at least
exp 2 K+(r/2)N. From Proposition 6, at most exp 2K+10s(8+N)
functions have C(f) I K. By taking N large enough,
log (8 + N) will be less than (d4)N and the ratio of
exp 2 K+(r/4)N to exp 2K+(r/2)N can be made less than 6
which completes the proof. Q.E.D.

Informally, this theorem says that if you take the func-
tions of complexity K(f) and try to implement them using
a circuit whose cost ‘is consistent with K(f), you will

ABU-MOSTAFA: INFORMATION EXTRACTION 519

always succeed, whereas if you try to cut the cost, you will
fail in almost all cases. Notice that for very low-complexity
functions, the error term CN becomes significant, and
hence the theorem does not say much. This has the nice
interpretation that if the function is very simple, it may
pay to look for a compact unsystematic implementation.

D. Randomness

Theorem 1 says that the complexity measure K(f) is
almost identical to the cost measure C(f). It turns out that
the two measures are also related to the algorithmic infor-
mation (Kolmogorov-Chaitin complexity [8], [13]) applied
to Boolean functions, which we call the randomness of the
function. We establish these relations and discuss their
interpretation.

Let U be a universal Turing machine [27] with input
alphabet (0, l}, and let p denote the binary program
supplied to the tape of U. If, given p, U halts and leaves
the binary string w on the tape, we say that w = U(p). Let
r(f) be a listing of the truth table of the Boolean function
f, that is, r(f) = TV, ~~,a . . , r2~ -r, where rk is the value of
f when the inputs are the N-bit binary representation of
the number k. The measure of randomness is defined in
terms of the shortest length of a program that generates
r(f). This measure will have a large value if we cannot
describe the truth table in a concise way.

Definition: The randomness of a Boolean function f,
denoted by R(f), is defined by

R(f 1 = logtin {IPI 2 W(P) = T(f)>.
The units of R(f) are bits.

Since any string r(f) can be generated by a program
whose length is a constant (the code of a trivial Turing
machine) plus the length of the string (namely 2N), R(f)
is at most = N bits. In contrast .with the K(f) and
C(f), R(f) is an uncomputable function.

The versatility of a universal Turing machine enables us
to find short programs to generate r(f) whenever f has a
compact normal form (small K(f)) or a compact combi-
national circuit (small C(f)). For example, we can con-
struct a program p of length Ip(I 2K(/)+o(N) that gener-
ates r(f), thereby showing that R(f) I K(f) + o(N).
Given K(f), a normal form exists that simulates f and
has at .most K(f) inputs per gate. The program is based
on this normal form and consists of three parts. The first
part is a constant-length routine for generat ing r(f), bit
by bit, given the full specification of the normal form and
the truth tables of its gates. The second part of the
program is an encoding of the normal form input config-
uration, the length of this encoding is bounded by a
polynomial in N. The third part is a listing of the truth
tables of the gates, at most K(f) + 1 tables each of length
at most 2K(f) bits. Putting the three parts together, it is
clear that Ip 1 I 2 K(f)+“(N). We can also show that R(f)
I C(f) + o(N) by constructing a program to generate
r(f) based on the smallest circuit that simulates f. We fix
a lexicographic ordering of all circuits, with the less costly

circuits coming first. The program p includes the smallest
index of a circuit that simulates f (by Proposition 6, this
index will be at most 2C(‘)f”(‘v) bits long), a constant-
length routine to “decode” the circuit from its index, and a
constant-length routine to generate r(f) from the circuit.
The details are straightforward.

On the other hand, for any K, there are at most Cf:a2’
< 22K+1 programs p of length IpI I 2K bits, and hence at
most that many functions f with R(f) I K. Using the
same argument in part b) of Theorem 1, the other direction
of the relations between K(f) and R(f) and between
C(f) and R(f) is established.

An interesting interpretation can be gained from these
relations. Wh ile C(f) measures the size of a purely combi-
national implementation of f, R(f) measures the size of a
purely sequential implementation. An important merit of
K(f) is its intimate relation to both of these measures. The
distribution of these measures was a key factor in the
arguments; the number of functions having K(f) s
K(C(f) I K, or R(f) 5 K) is approximately 22K. Wh ile
this approach relates complexity measures in an “almost
always” sense, it is of interest to investigate which mea-
sures are pointwise identical, that is, different by o(N) for
every function f [4].

E. Deterministic Entropy

Proposition 4 may raise the question as to whether or
not there is an important class of functions whose com-
plexity is less than K, other than those functions which
depend on less that K variables. The answer to this
question is fortunately yes. The class we are concerned
with here is the class of low-entropy functions.

Definition: Let S be a fixed nonempty N-subset of U. If
a function f, whose support is a subset of S, assumes the
value 1 (or the value 0) in h I 2N-’ states of the variables
in S, then f is said to be of (deterministic) entropy
H = log(1 + h). The units of entropy are bits.

Functions of low entropy have relatively few l’s or O’s in
their Karnaugh maps [12]. The motivation for this
terminology will become apparent shortly. Notice that the
definition of H depends on (the fixed) N. We are inter-
ested in estimating the complexity of the functions of
entropy H. W ithout loss of generality, we shall consider
only the functions with h 1’s.

Definition: Given a function f of entropy H, the state of
the variables in a subset S, of S is positiue if there is an
assignment of O’s and l’s to the rest of the variables in S
that makes f = 1.

f can have at most h = 2H - 1 positive states for any
subset Si, since only h l’s are in the Karnaugh map of the
function. Therefore, as far as f is concerned, the state
of the variables in Si can be encoded using [log (1 + h)l =
[H 1 binary variables (the extra 1 represents “the state is
not positive”). Taking]S,] > [HI, this encoding con-
stitutes information compression, since we represent a
number of variables by a smaller number of variables.
Furthermore, in terms of the new variables (the com-

520 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 4, JULY 1986

pressed variables from S, together with the rest of the
variables outside S,), the entropy of the function remains
the same, and hence we can repeat this compression. This
fact is used to implement low-entropy functions on circuits
and normal forms of moderate size.

Circuit Implementation: Consider an arbitrary Boolean
function f of N variables whose entropy is H bits. Since
we can compress any number of variables into [H 1 vari-
ables, we repeatedly compress [H 1 + 1 variables into [H 1
variables, each time using [H] universal gates of [H] + 1
inputs (Fig. 4(a)). We thus reduce the N variables to
N - 1, N - 2;. -, down to any number of variables, say
[H] + 1 variables (Fig. 4(b)). We can then implement the
function f in terms of these [Hl + 1 variables using one
universal gate of [H] + 1 inputs. The compression from
N to [H] + 1 variables takes (N -[HI - 1) x [H] uni-
versal gates of [H 1 + 1 inputs, and then we have the final
gate with [H] + 1 inputs too. Therefore, the cost of this
circuit is (1 + (N -[H] - 1) X [H])2rH1+1 cells. Since
0 5 [H] < N, this cost is I 2H+o(N) cells.

Normal-Form Implementation: Suppose that H -=K N.
Partition S into JN/K subsets each of cardinality &?@
(approximately); Consider the configuration C that has
[H 1 duplicates of each of these subsets. Each primary gate
has &!% inputs, and the secondary gate also has 1 H]
x ,/m = m inputs (Fig. 5(a)). Therefore, log
log N(C) will be approximately m (by Proposition 1).
Furthermore, C admits any function f of entropy H since
the [Hl (duplicate) primary gates can be programmed to
encode the (relevant) state of their inputs, and the sec-
ondary gate can then decide whether f = 1 (matched posi-
tive states) or f = 0 (unmatched positive states, or some
non-positive state). If H is not much smaller than N,
a configuration C can still be constructed using [H]
duplicates of a subset of S having approximately
(N + H)/2 elements together with the rest of the elements
in S appearing as singletons (Fig. 5(b)). This configuration
has log log N(C) = (N + H)/2.

6

I I

,H,‘-;Vai,ables +

(a)

FIllal L- Gate
‘[Hj+ I Varlobles

/ / / / / /

--;

I
T

[H] + 2 Variables

N - 2 Varfables

N - I Var lables

N Variables

IHI + I Vorlables

@I

Fig. 4. (a) Compressing 1 H] + 1 variables into [H] variables. (b)
Circuit for implementing any function of N variables with entropy H
using block in (a).

H x N =&% Primary Gates
fi

(4

>~(H+N) h2 (H +N) Swgletons

(b)

Fig. 5. (a) Normal form for implementing any function of N variables
with low entropy H. (b) Normal form for implementing any function of
N variables with entropy H.

Notice that in all these implementations, the same cir-
cuit or normal form can simulate any function f of
entropy H by proper programming of the gates. This
makes them universal structures for all problems of dimen-
sionality N and entropy H. It is appropriate to ask whether
we can do substantially better for euely function. The
following theorem proves the contrary for circuits, but the
question regarding normal forms is still open [4].

Theorem 2: Let S be a nonempty N-subset of U, and
let F’(H) be the set of functions of entropy H (where

ABU-MOSTAFA: INFORMATION EXTRACTION 521

2H - 1 5 2@’ is an integer). Define C, = max {C(f)]
f E Fs(H)} and K, = max {K(f)lf E 4(H)). Then, a>
H - o(N) 4 C,, < H + o(N); b) H - o(N) < K, I
(H + N)/2 + o(N).

Proof: We shall use Lemmas 1 and 2 (Appendix I)
and Proposition 4. a) The right-hand side (RHS) follows
from the circuit implementation described above. For the
left-hand side (LHS), we take H > 3, without loss of
generality (since C, 2 0 2 3 - o(N)). The number of dif-

ferent f’s with 2H - 1 l’s is 2N
2H- 1

, which is more

than 2N
(i

i i

2H-1 .
By Lemma 2, this is at least (2p(2+(H-1)/2))

x exp (2NH(2H-‘-N)). By Lemma 1, this is at least
(2-(2+(H-1)/2)) X exp((N - H + 1)2H-1). Since H > 3,
this is greater than exp ((N - H)2H-1) 2 exp 2H-2. From
Proposition 6, since log(8 + N) = o(N), at least one of
the functions f of entropy H has C(f) 2 H - o(N), and
hence C, 2 H - o(N). b) The RHS follows from the
normal form implementation described earlier. The LHS
follows by an argument similar to that of part a), using
Proposition 4 instead of Proposition 6. This completes the
proof. Q .E.D.

For any function f of entropy H, one can construct a
program of length I 2 H+o(N) to generate the truth table
r(f) by specifying the index of f among all functions of
entropy H. This shows that the randomness, like the cost,
satisfies R(f) I H(f) + o(N). It is also simple to extend
Theorem 2 and show that almost all functions of entropy
H have complexity, cost, and randomness at least H -
o(N). This makes deterministic entropy an essential
parameter in characterizing a function. F inally, we note
that H(f) cannot be bounded by K(f), C(f), or R(f),
since simple functions of high entropy exist such as the
modu lo-two sum.

IV. APPROXIMATION

In this section, the complexity results of the previous
section are discussed in a probabilistic context. An error-
tolerant version of the complexity and cost measures are
defined and related to information-theoretic entropy and
decision reliability.

Consider the case where the Boolean variables si,. . . , sN
become random variables under some probability measure.
Let S be a fixed nonempty N-subset of the universal set
U. Define S to be the set {O,l}s of all binary N-tuples
indexed by the Boolean variables si; . a, sN of S. Let p be
a probability measure on $. This measure induces a prob-
ability distribution on all Boolean functions f whose sup-
port T(f) is a subset of S, that is, these functions become
(dependent) random variables under this measure. We
shall refer to the pair (S, p) as the ensemble.

Suppose that we can afford a nonzero probability of
error S in implementing the function f. It is conceivable
that we can reduce the complexity (cost) of f by ap-

proximating f by another function g which is less com-
plex (costly) than, but does not often differ from, f.

Definition: The &complexity and &cost of a Boolean
function f, denoted by K,(f) and C,(f), respectively, are
defined for 0 < 6 < 1 by

K,(f) = m in {Kk)lPr(f + d 2 6)
G(f) = tin NdlPr(f# d 5 8).

Since the m inimization doma in includes f itself, it fol-
lows that K,(f) < K(f). Also, it is obvious that for
6 2 l/2, K,(f) = 0 for any function f since one of the
two constant functions g = 0 or g = 1 will be in the
m inimization doma in. We now investigate the (possibility
and) conditions for having K,(f) significantly less than
K(f) for small 6. The same remarks apply to C,(f) and
can be extended to a similar definition of R*(f).

A. Low-Entropy Case

We start with a definition that links deterministic en-
tropy to information-theoretic entropy.

Definition: The a-entropy H,(S) is defined for 0 < 6 < 1
by

H,(S) = logmin {]S,]JS, c S, p(S,) 2 1 - S}.

In other words, H, is the m inimum number such that S
can be partitioned into &USA (T for typical and A for
atypical), where IS,] 5 2Ha and p(S,) I S. H,(S) be-
comes very significant when the partition is such that S,
has most of the probability (small 6) while S, has most of
the points (small H,). In pattern recognition, for example,
the set of mean ingful images is an exceedingly small subset
of the set of all “two-dimensional data arrays.”

For many probability measures of interest [28], such as
the independent identically distributed si, H, is asymptot-
ically equal to Shannon’s entropy H of the ensemble:

1
H= c p(s)log-

SGS p(s).
PC”)+0

We now apply Theorem 2 and relate H, to K, and C,.
For any function f, no matter how complex, we argue that
G(f) < f&(S) + o(N) and K,(f) 5 (f&(S) + W /2
+ o(N). This is because we can construct a function g
satisfying Pr (f # g) I 6 and also having C(g) I H,(S)
+ o(N) and K(g) I (H,(S) + N)/2 + o(N). To do this,
we partition S into &USA according to the definition of
H8. If f is always 0 or always 1 for the states in S,, we
take the approximating function g to be a constant 0 or 1,
respectively. Since Pr (f f g) _< p(S,) I 6 and K(g) =
C(g) = 0, the result follows. On the other hand, if f
assumes both values 0 and 1 for the states in S,, then
define the function g to be equal to f for the states in S,
and equal to 0 for the states in S,. Again, Pr (f # g) I
p(S,) I S. Furthermore, g assumes the value 1 in at most

522 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 4, JULY 1986

2H8 - 1 states in S. Hence the deterministic entropy of g
is at most H8 and the result follows from Theorem 2.

V. FALSE ENTROPY

B. High-Entropy Case

The reliable low-cost approximation of all functions in
the low-entropy case may persuade us to look for a good
approximation of any function in general. Conceivably,
even in the maximum-entropy case (uniform probability
measure), some other technique for constructing g will
work. We will show that this is not the case.

Definition: A d-error pattern e is any Boolean function
satisfying Pr (e = 1) I 6.

Each b-error pattern can be thought of as the locations
in the Karnaugh map where an error is made in approxi-
mating a function f by a function g (with error probabil-
ity at most 8). The following theorem describes how
approximation affects the complexity and cost of most
functions.

Theorem 3: Let the probability measure on S be uni-
form. Given E > 0 and 0 < 6 < 1, the following hold. a) If
6 2 l/2, then K,(f) = 0 for any function f. b) If 6 < l/2,
a positive integer No (function of e and 6) exists such that
for N 2 N,,, the fraction of functions f having K,(f) I
K(f) - eN is less than e. c) The same results apply to the
S-cost function C,(f).

Proof: We shall use Lemma 2 (Appendix I) and Prop-
ositions 4 and 6. a) One of the two constant functions
g = 0 or g = 1 must be in the m inimization domain. Since
K(g) = 0 for both functions, the result follows.

b) By Proposition 4, we estimate the number of func-
tions g of complexity K(g) I (1 - c)N to be at most
22 N(‘-(c’2’). From the definition of error pattern, it is obvi-
ous that the function g which approximates some function
f with error I 6 must satisfy f = g @ e for some S-error
pattern ‘e. The number of l’s in e is at most S2N since the
probability measure is uniform. Therefore, by Lemma 2,
the number of different &error patterns is at most 62N x
exp (2NH(S)) where H(6) < 1 is the uncertainty function
(Appendix I) evaluated at 6 < l/2. Hence the number of
functions f that can be approximated by some function g
of complexity K(g) I (1 - e)N is at most (22N”m(“2)))
(62N x exp(2NH(S))), which can be made less than e22N
by taking N large enough.

c) The argument is similar to parts a) and b) using
Proposition 6 instead of Proposition 4. This completes the
proof. Q.E.D.

This theorem says that most functions have approxi-
mately 2 N-1 l’s and 2N-’ O’s scattered in the Karnaugh
map, and no way exists to reduce the complexity or the
cost significantly by placing “don’t care’s ” in less than
half the blocks of the map. For these functions, it is not
worth saving when we want to implement them. Although
Theorem 3 assumes uniform probability distribution, a
similar statement can be proved for some nonuniform
distributions by considering only the typical blocks in the
Karnaugh map.

In a typical pattern recognition problem, a point in the
ensemble S (an image, or a binary matrix) is given, and it
is required to decide whether or not this image belongs to
a certain class. The optimal classification decision D is a
Boolean function of the Boolean variables in S (the pixels).
Typically, the entropy H, is much smaller than N, and the
reliable implementation cost of D is within H, I/I o(N).
Therefore, the entropy of S is crucial to the cost, and one
should use whatever information may be available to re-
duce the entropy.

Preprocessing procedures to reduce the entropy in pat-
tern recognition include segmentation and normalization.
These procedures can be formalized in terms of the aver-
age mutual information and the entropy.

Definition:- An entropy-re$ction procedure is a mapping
from S to S such that I(S; D) = I(S; D) and H(S) <
H(S)-

In words, we retain all the information relevant to the
decision but discard some of the irrelevant variations in
the ensemble. This step uses the properties of the pattern
which are known to us to get rid of the false entropy, that
is, the variations in the pattern which are not random. For
example, all images which are rotated versions of one
another usually belong to the same class. When we normal-
ize an image such that its contents have a specific orienta-
tion, we get rid of the false entropy associated with rota-
tional variations. Such a procedure usually takes linear or
polynomial computation time, but it reduces the computa-
tion demand tremendously because it decrements the ex-
ponent in the total cost.

False entropy is not an absolute measure, it depends on
what is considered to be a regularity. It is possible to
formalize the concept based on universal Turing machines.
The randomness of a function of entropy H can, in princi-
ple, be as high as max { R(g)lH(g) = H}. If it is less, the
difference will be due to the (partial) structure or regular-
ity of the function.

Definition: Let S be a fixed N-subset of U. The false
entropy of a function f, whose support is a subset of S, is
defined by

A(f 1 = max {R(g)lT(g) c S, H(g) = H(f >) - R(f >.

The units of A(f) are bits.
Notice that max{R(g)lT(g) c S, H(g) = H(f)} is the

maximum randomness (algorithmic information) for this
level of entropy (combinatorial information). This maxi-
mum is close to R(g) of most functions g of entropy =
H(f) and is approximately equal to H(f). Hence A(f) = 0
for most functions. However, for highly structured func-
tions of maximum entropy such as the modulo-two sum,
practically all the entropy is false; A(f) = N. In practical
problems, preprocessing steps take care of the partial
structure in the problem. The resulting ensemble is then
expected to meet the bounds of Theorems 1, 2, and 3, and
any system that will do the recognition task reliably will
have to meet the cost requirements. A pattern recognition

ABU-MOSTAFA: INFORMATION EXTRACTION 523

system that solves problems with entropy H must cost the
order of 2H cells.

ACKNOWLEDGMENT

I gratefully acknowledge Dr. D. Psaltis, who contributed
significantly to this work. I also wish to thank Drs. R.
McEliece, C. Mead, and E. Posner for their help.

APPENDIX I
LEMMAS1,2,AND3

The following general (and not particularly strong) lemmas are
used to prove the main propositions and theorems.

The uncertainty (entropy) function [24] is defined by H(x) =
x log(l/x) + (1 - x)logl/(l - x) for 0 < x < 1 and H(0) =
H(1) = 0. The following lemma estimates H(x).

Lemma 1: For 0 < x < 1, we have x log(l/x) < H(x) <
x(2 + log(l/x)).

Proof: The LHS follows from the positivity of
(1 - x)logl/(l - x). For the RHS, we estimate this term.
(1 - x) log l/(1 - x) = (1 - x)/n 2 In l/(1 - x), where In de-
notes the natural logarithm. Since In 2 is greater than 0.5, we have
the overestimate 2(I - x)lnl/(l - x) = 2(1 - x)(x + (x2/2)
+ (x3/3) + . . .). This is less than 2(1 - x)(x + x2 + x3
+ . ..) = 2(1 - x)x(1 + x + x2 + . . .). The expansion re-
duces to (1 - x)-l, and therefore we get the final estimate 2x
and the RHS follows.

Stirling’s formula [14] estimates n! for n > 0 by &(n/e)“,
where 01 is between 2 and e (converging to fi). The following
lemma uses this formula to estimate : Similar estimates are
found in [20, app. A].

(1

Lemma 2: Let (1 : = n!/r!(n - r)!. a) If 0 < r < n, then
(1/4fi)2”“(‘I”) I F I 2”‘f(r’n). b) If 0 < t < n/2, then (1
(1/4J7)2 - nf’(r/rl) < -p=,

(1
‘: 5 tyH(‘/“).

Proof: We manipulate (:) using Stirling’s formula. a)

(1
1 n = r r!(n - r)!

II; I(

n l/2 (n/e) " =-
a2a3 r(n i r) (r/e)r((n - r)/e)+’ I

where opt, 0~~) a3 are between 2 and e. It is simple to check that
(Y~/(Y~(Y~ is between l/4 and l/J?. Also, (n/r(n - r))‘12 is
between l/ fi and a. Therefore, their product is between l/4&
and 1. We now evaluate ((n/e)“/(r/e)l((n - r)/e)‘-‘). This
can be rearranged as ((r/n)‘((n - r)/n)‘f-r)-l. Taking the loga-
rithm, we get nH(r/n) and part a) follows by exponentiation.

b) The LHS considers only the last term in the summation and
applies the LHS in a). The RHS overestimates each term by the
last term (since 0 < t < n/2) and then applies the RHS in b).
This completes the proof. Q.E.D.

The following lemma estimates the number of different multi-
sets of a special class.

Lemma 3: Let pM be the number of different multisets X, =
(n,,.. ., nQ) where the n, are positive integers satisfying CE i 2”~
= 2M for the positive integer M. Then pM 5 22M.

Proof We claim that any X,,, can be written as the union
of two x,, except X,, i = (M + 1). To see this, we take the
X ,+I+1 and replace each two l’s in it by a single 2 (conceivably
leaving a single 1 at the end). We next replace each two 2’s by a
single 3 and continue in this fashion until we replace the M - l’s
by M’s, This procedure must yield exactly (M, M) because at
most a single 1, a single 2,. . . , a single M - 1 are left, and these
cannot contribute to Cj?=i2”1 more than 2M - 2. Therefore, we
go back and decompose the two M’s getting two X,,,, which
proves the claim. Hence pM+, is at most 1 + (pw(pM + 1)/2).
For pu 2 2, which holds for M 2 2, this is at most pz. The
proof now follows by induction after overestimating pi and p2
by 22’ and 2”, respectively. Q.E.D.

In [ll], an asymptotic estimate for pM is given, but the result
derived there could not be used to improve on main results.

APPENDIXII
PROOFSOFPROPOSITIONS 1,2, AND 3

These propositions are concerned with the properties of nor-
mal-form input configurations.

Proposit ion 1: Let C = (S, , . . . , S,) be a configuration which
admits N(C) Boolean functions. Let r(C), I(C)(= L), d(C) be
the rank, length, and degree of C, respectively. Then, a) d(C) I:
log10 N(C) I max(l(C), d(C)) + log(max(Z(C), d(C)) + 1);
b) J” r(C) I loglog iv(C) I r(C).

Proof: We first maintain that log log N(C) exists (and is
nonnegative) by observing that N(C) 2 2 since all configura-
tions admit the two constant functions (including the empty
configuration by definition). All statements are trivial for the
empty configuration, and now assume that C is nonempty. a) Let
S,” be a component of maximal cardinality in the configuration.
By definition,]SA = d(C). Now C can simulate at least the 22d’C1
different functions whose support is a subset of S, The LHS
inequality in a) follows by taking the logarithm twice. To prove
the RHS inequality,. we observe that the number of different
mappings that can be simulated by the primary gate of S, is 22’s”
and the number of mappings that can be simulated by the
secondary gate in terms of its inputs is 22”c’. Therefore, N(C) is
at most exp (Z:!?J21sti + 2’(c)). We increase this number by sub-
stituting for each IS,] and for 1(C) by M = max(l(C), d(C)).
This gives N(C) < 2(“+1)2M, which yields the RHS inequality
in a).

b) The support T(C) contains the support T(f) of any func-
tion f admitted by C. Since T(C) has r(C) Boolean variables,
N(C) is at most 22”‘c’. Taking the logarithm twice yields the RHS
inequality in b). Now let C* = (ST,. . . , S,*,) be the configura-
tion defined by ST = Si and S,* = S, \ U):‘,S, (if nonempty;
otherwise, skip and relabel) for i = 2,. . . , L* (L* I L We
shall prove the LHS inequality in b) for C*. If d(C*) > d- r(C*) ,
we are done (LHS inequality in a)), so we assume that d(C*)
< dm. However, Z(C*)d(C*) 2 r(C*) (since the r(C*)
variables are contained in the I(C*) components and each com-
ponent has at most d(C*) variables). Therefore, I(C*)
> ,/m. Since the S,* are disjoint and nonempty, C* can
simulate at least exp 2m functions (those simulated by the
secondary gate when each primary gate “passes” a distinct
variable). Taking the logarithm of N(C*) twice, we get the LHS
inequality in b) for C*. By construction, each variable in the S, is
contained in some S,* and vice versa; hence r(C*) = r(C). Also,
C* is a reduced form of C, which implies that C admits all the
functions admitted by C*. Therefore, N(C) 2 N(C*) and the
LHS inequality in b) follows. This completes the proof. Q.E.D.

524 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 4, JULY 1986

Proposition 2: If a configuration C = (S,; . ., S,) is not re-
dundant, then for all subsets X of (1; . ., L}, the following
condition holds:

Proof: We shall use Hall’s theorem [22] about the existence
of a system of distinct representatives (SDR), which is a collec-
tion of distinct elements such that each element belongs to
(represents) a specific subset within a given collection of subsets.
Suppose that the condition does not hold. Then a subset h of
(1,. . .> L} exists for which lU,,,S,l < 1x1. Let A be a minimal
subset satisfying this condition. Let j be any element of h (A is
nonempty since IX] > 0). Let h, = X \ { j }. Since h is minimal,
we have IU, E x, S,l 2 JXjl. However,]A,] =]A] - 1 and IX] >
IU~X~,I 2 IUEX ,,$I. This forces both lJ, E xS, and Ui E x S, to
have cardinality JX] - 1 (= IX,]) and forces SJ to be contained in
lJi E h, S,. By minimality of A again, the sets S, with i in Xj
satisfy the Hall condition for an SDR. This SDR has IX,]
elements and so does UiEA S,. Hence, the SDR covers all the
elements of the S, with i in’ X,. Now S, is a subset of U, E xjSi,
and we can omit it without diminishing F(C) since the SDR can
be passed by the other primary gates to the secondary gate which
can then implement any function of the variables in U, EXSi.
Hence C is redundant and the proof is complete. Q.E.D.

Proposition 3: a) If C is a configuration with I(C) > r(C),
then a configuration C* with I(C*) I r(C*) exists which is
equivalent to C. b) Let S be an N-subset of the universal set U.
At most 2NZ possible values for F(C) exist over all configurations
C whose support T(C) is a subset of S.

Proof a) C must be redundant since 1(C) > r(C) means
that the condition of Proposition 2 does not hold for C with
x = {l;.., I(C)}. We keep omitting the unnecessary 3 until we
get I(C*) 5 r(C*).

b) From part a), we need to consider only those configurations
with I(C) I N. Since d(C) I N, we can now enumerate the
number of different C’s. Each component can be assigned 2N
different subsets of S, and at most N such components exist.
Therefore, the total number of different configurations is at most
JJfi=12N = 2NZ. Since the different F(C)‘s can be at most that
many, the proof follows. Q.E.D.

APPENDIX III
PROOFSOFPROPOSITIONS~,~,AND 6

These propositions are concerned with the properties of the
complexity and cost measures.

Proposition 4: Let Fs be the set of all Boolean functions f
whose support is a subset of a nonempty N-set S. Define
NK=]{f~Fs]K(f)<K}].ForO~K~N,wehave

K-l<loglogN,1K+21ogN.

Proof: We shall use Proposition 3. Obviously, all functions f
depending on at most 1 K] variables have K(f) 5 K. There are
at least 22Km’ such functions in Fs and the LHS inequality
follows by taking the logarithm twice. From Proposition 3, at
most 2N2 different F(C)‘s exist with T(C) a subset of S. Each
function f of complexity K(f) I K must belong to an F(C)
whose cardinality is at most 22K. Therefore, NK I 2N222K and the
RHS inequality follows by taking the logarithm twice. This
completes the proof. Q.E.D.

Proposition 5: Let f be a Boolean function of complexity
K(f) = K. Then, a) any normal form implementation of f costs
at least 2K cells, and b) a normal form implementation off exists
which costs at most 2K+iog(1+ K, cells.

Proof: We shall use Propositions 1 and 2. a) Let C =
(S,,.. ., S,) be a configuration that admits f. From the defini-
tion of K(f), 22K I N(C). Let n,; . +, nL be the cardinalities of
s,; . ., S,-, respectively (number of inputs to each primary gate).
Now N(C) I exp (2L + C~=,2”~) (same argument as in Proposi-
tion 1). By taking the logarithm, we get part a).

b) Let C be a minimal configuration (with respect to N(C))
that admits f. If C is redundant, omit unnecessary S, until
the condition of Proposition 2 is satisfied. We show that
max (f(C), d(C)) I K. Suppose not. If d(C) is greater than K,
then C admits more than 22K functions using the primary gate
with d(C) inputs; else, if 1(C) is greater than K, then by passing
an SDR from the primary gates to the secondary gate, C also
admits more than 22K functions, a contradiction. Hence the cost
of C is at most (K + 1)2K cells and b) follows by rearrangement.

Q.E.D.

Proposition 6: Let F, be the set of all Boolean functions f
whose support is a subset of a nonempty N-set S. Define
iK=]{f~Fs]C(f)~K}].ForO~K~N,wehave

Proof: Since 1 K] I N, there are at least exp 2 lK’ func-
tions that can be simulated by a single universal gate of 1 K]
inputs. The LHS follows since 1 K] > K - 1. For the RHS, we
can take K 2 1 since the statement is clear for K < 1 (constant
functions only). Let M = [K] . We overestimate fiK by i?,,. To
do this, we shall estimate the number of different ways we can
choose a collection of gates given the total cost of 2M cells, the
number of circuits that can be formed using a given collection of
gates, and the number of Boolean functions that can be simu-
lated on a given circuit. We restrict the gates to have a positive
number of inputs, since zero-input gates contribute only the
constant functions which can be simulated otherwise. Restricting
the cost to be exactly 2M cells is justified by adding l-input gates
(all costs involved are even) without using their outputs.

1) A collection of gates is isomorphic to a multiset of numbers
(the number of inputs in each gate). The number of multisets
(n,,. . ., na) with positive ni satisfying Xy=r2”1 = 2M (i.e., whose
cost is 2M cells) is at most 22M by Lemma 3.

2) Given N Boolean variables xi; . . , xN and calling the
outputs of the Q gates y,, . + ., ya, we have at most N + Q
different variables that can be input to each gate. Therefore, for
each collection of gates with n,; . ., np inputs, we have at most

l-I< N+Q I 1
(1 n,

possible interconnection schemes or circuits (en-
tering the same variable twice to the same gate or interchang-
ing the inputs within a gate cannot increase the functions
because the gates are universal). By Lemma 2, substituting
for each term in the product, this number is at most
exp ((Q + N)E$=IH(n,/Q + N)) where H(x) is the
uncertainty function defined in Appendix I. Substituting
for each H using Lemma 1, this number is at most
exp (<Q + N)C$=l(n,/(Q + N))(2 + lw(Q + N)/n,)).
Since each n, is at least 1, this number is at most
exp ((2 + log(Q + N))E$,n,). Subject toZ$=, = 2”, the max-
imum value of Ce=,n, occurs when all the n, are l’s and is 2Mp’.
Hence we get the following overestimate: exp ((1 +
(l/2) log (2’+-’ + N))2”).

ABU-MOSTAFA: INFORMATION EXTRACTION 525

3) For each of the foregoing circuits, there are II $= r 22”’ ways
to program the universal gates, and for each of these we have at
most Q implemented functions out of the Q gates. Hence the
number of functions that can be implemented on the circuit is at
most QIIE, exp 2”i, which is less than 22X2M.

Therefore, from 1, 2, and 3, the number of functions f whose
support is a subset of S and can be implemented within cost 2””
cells is at most the product of the three estimates, namely,
exp((4 + (1/2)log(2”-’ + N))2”). Since M < K + 1 and
also M I N, this is at most exp ((8 + log(2N-’ + N))2K).
Since N I 2j’-’ (N is an integer), this is at most
exp ((8 + log(2N-’ + 2N-‘))2K), which reduces to expexp(K
+ log(8 + N)), and the proof follows by taking the logarithm
twice. Q.E.D.

REFERENCES

[l] H. Abelson, “Towards a theory of local and global in computat ion,”
Theoref. Cotnput. Sci., vol. 6, pp. 41-67, 1978.

[2] H. Abelson et al., “Composit ional complexity of Boolean func-
tions,” Discrete Appl. Math., vol. 4, pp. l-10, 1982.

[3] Y. Abu-Mostafa, “Complexity of information extraction,” Ph.D.
dissertation, California Inst. Technol., Pasadena, 1983.

141 -, “Pointwise universality of the normal form,” in Fundamental _ .
Problems in Communication hnd Computation, B. Gopinath and T.
Cover. Eds. New York: Surinner-Verlaa. 1985.

[5] A. Aho et al., The Design’ and Analysi~of Computer Algorithms.
Reading, MA: Addison-Wesley, 1974.

[6] A. Borodin, “On relating time and space to size and depth,” SIAM
J. Comput., vol. 6, pp. 733-744, 1977.

[7] G. Cl&tin, “Infdrmation-theoretic computat ional complexity,”
IEEE Trans. Inform. Theorv. vol. IT-20. DD. 10-15. 1974.

[8] -, “A theory of program’size formally;dentical to information
theory,” J. Ass. Comput. Mach., vol. 22, pp. 329-340, 1975.

[9] R. Duda and P. Hart, Pattern Classification and Scene An&is.
New York: W iley-Interscience, 1973.

W I

Pll

W I

1131

P41

P51

W I

P71

1181

u91

W I

PI

W I
[231

1241

~51

W I

]271

W I

R. Gallager, Information Theory and Reliuble Communication. New
York: W iley, 1968.
D. Knuth, “An almost linear recurrence,” Fihonucci Ouurt.. vol. 4,
pp. 117-128, 1966.
Z. Kohavi, Switching und Finite Automutu Theory, 2nd ed. New
York: McGraw-Hill, 1978.
A. Kolmogorov, “Three approaches for defining the concept of
information quantity,” Inform. Transmission, vol. 1, pp. 3-11,
1965.
C. Liu, Introduction to Combinatorial Muthematics. New York:
McGraw-Hill, 1968.
0. Lupanov, “Complexity of formula realization of logical algebra,”
Prohl. Cybern., vol. 3, pp. 782-811, 1960.
P. Martin-LGf, “The definition of random sequences,” Inform.
Contr., vol. 9, pp. 602-619, 1966.
R. McEliece, The Theory of Information and Coding. Reading,
MA: Addison-Wesley, 1977.
C. Mead and L. Conway, Introduction to VLSI Systems. Reading,
MA: Addison-Wesley, 1980.
J. Peatman, Digital Hurdwure Design. New York: McGraw-Hill,
1980.
W. Peterson and E. Weldon, Error Correcting Codes. Cambridge,
MA: MIT Press, 1972.
N. Pippenger, “Information theory and the complexity of Boolean
functions,” Math. Syst. Theoty, vol. 10, pp. 129-167, 1977.
H. Ryser, Combinatorial Mathematics. Math. Ass. Amer., 1963.
J. Savage, The Complexity of Computing. New York: W iley-Inter-
science, 1976.
C. Shannon, “A mathematical theon, of communicat ion,” Bell.
Svst. Tech. J., vol. 27, pp. 379-423, 1948.
-, “The synthesis of two-terminal switching circuits,” Be/l Syst.
Tech. J., vol. 28, pp. 59-98, 1949.
S. Skyum and L. Valiant, “A complexity theory based on Boolean
alaebra.” in Proc. 22nd IEEE Svmo. Foundations of Comouter
SGence; 1981, pp. 244-253. ’ *

, .

A. Turing, “On computable numbers with an application to the
Entscheidungsproblem,” in Proc. London Math. Sot., vol. 42, pp.
230-265, 1936.
J. Wolfowitz, Coding Theorems of Information Theory, 3rd ed.
New York: Springer-Verlag, 1978.

