Optical Neural Computers

Can computers be built to solve problems, such as recognizing patterns,

that entail memorizing all possible solutions? The key may be to arrange

optical elements in the same way as neurons are arranged in the brain

by Yaser S. Abu-Mostafa and Demetri Psaltis

omputer scientists find it increas-
‘ ingly frustrating to see how ca-
sually a three-year-old picks out
a tree in a picture. Sophisticated pro-
grams running on the most powerful
supercomputers are capable of only a
mediocre performance in doing what
essentially amounts to the same task:
pattern recognition. What makes this
state of affairs so paradoxical is the
fact that solutions to many problems
that overtax the human brain can be
arrived at quickly by computers. In-
deed, a simple pocket calculator can
easily outperform the human brain in
such tasks as finding the product of
two 10-digit numbers. What is the dif-
ference between the multiplication of
numbers and the recognition of ob-
jects that makes the latter so much
tougher to achieve in computers? In
other words, why is it so difficult to
make a computer recognize a tree?
The answers to these questions ulti-
mately hinge on the fact that pattern-
recognition problems cannot be com-
pactly defined. In order to recognize
trees a comprehensive definition of a
tree is required, and such a definition
would be tantamount to a description
of every conceivable variant. Prob-
lems such as those posed by pattern-
recognition tasks constitute a subset of
what we call random problems: prob-
lems whose solution requires knowl-
edge of essentially every possible state
of a system. Solving a random prob-
lem therefore entails memorizing the
set of all possible solutions and quick-
ly selecting the best solution from the
set, given the input data. In contrast,
the solution to such a classical compu-
tation problem as muitiplication can
typically be expressed succinctly in
terms of an algorithm: a sequence of
precise instructions specifying how the
input data are to be manipulated to ar-
rive at the solution.
A conventional computer is adept
at mechanically executing the instruc-
tions in an algorithm, but it cannot
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match the memorization and recollec-
tion capability of the human brain,
which regularly and effortlessly con-
quers pattern-recognition problems.
Because the brain is unique in its capa-
bility to solve random problems, many
computer scientists and mathemati-
cians have taken a closer look at how
the brain works in the hope that the
principles of its operation can be fruit-
fully applied in designing machines
capable of solving random problems.
Devices designed to model the work-
ings of the human brain by emulating
its anatomic structure are called neu-
ral computers; like the brain, they
would consist of a large number of
simple processors that are extensively
interconnected. In this respect one
technology stands out as being partic-
ularly promising for constructing neu-
ral computers: optics.

Optical technology dovetails nicely
with the notion of a neural computer
because the technology’s strengths lie
in exactly those areas that distinguish a
neural computer, such as the intercon-
nection of a large number of process-
ing elements; its weaknesses lie in ar-
eas that are less critical for the func-
tioning of a neural computer, such
as the ability to perform intricate log-
ic operations at the processor level.
Whereas semiconductor technology in
conventional computers has proved to
be capable of tackling classical com-
putation problems by means of aigo-
rithms, optical technology in the neu-
ral computers we envision may one
day make it possible to solve random
problems efficiently. Indeed, in our
laboratory at the California Institute
of Technology we and our colleagues
have already built experimental pat-
tern-recognition systems that repre-
sent a first step toward an optical neu-
ral computer. :

Regardless of the technology a com-
puter incorporates (be it optical or
electronic) or the functions it executes

(be they multiplication or pattern rec-
ognition), two principal activities take
place in it as it solves a problem: log-
ic operations and data transmission.
Viewing computation in such funda-
mental terms helps to get to the source
of a particular computer technology’s
strengths and weaknesses. Semicon-
ductor technology can be applied to
build sophisticated logic circuits from
electronic switches of very small size
that have very reliable characteristics,
yet such integrated circuits are rather
limited in the amount of data that can
be transmitted among the circuit ele-
ments. The reason is that on a silicon
chip communication links consist of
wires that must be kept separated by at
least a minimum critical distance; oth-
erwise the electrical signals they carry
interfere with one another. This practi-
cal restriction places an effective limit
on the number of wires that can be
placed on a chip and hence on the
amount of data communication that
can take place on the chip.

Is there another technology from .
which computers could be built that
does not suffer from this limitation in
data communication? The operation
of the eye’s lens suggests one. The lens
takes light from each of millions of
points in the entrance pupil of the lens
and redistributes it to millions of sen-
sors in the retina. It is in this sense that
the lens can be thought of as a highly
capable interconnection device: light
from every point at the pupil is “con-
nected” to every point in the image fo-
cused on the retina. Moreover, multi-
ple beams of light can pass through
lenses or prisms and still remain sepa-
rate. Indeed, two beams of light, unlike
a pair of current-carrying wires, can
cross without affecting each other. It
is the ability to establish an extensive
communication network among proc-
essing €lements that primarily distin-
guishes optical technology from semi-
conductor technology-in its applica- -
tion to computation.
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PATTERN-RECOGNITION SYSTEM (top) developed by the
authors and their colleagues at the California Institute of Tech-
nology can quickly find the best match between an input image
and a set of holographic images that represents its “memory.” The
input image is projected into the system (diagram) through a
beam splitter—a partially reflecting mirror—by illuminating a
transparency (in this case one carrying an image of a cypress tree)
with a laser beam (bottom left). The light that passes through the
beam splitter hits the front of a threshold device, reflects off it
and retraces its path back to the beam splitter, where it is reflect-
ed at an angle to initiate an optical “loop.” A lens focuses the
input image on a hologram, where the image interacts with each of
four holographically stored images (here, of trees), creating pat-
terns of light whose brightness varies according to how well the
input and stored images match. A lens and a mirror direct the
light issuing from the hologram to a pinhole array that spatially

separates the four light patterns associated with each combination
of input image and stored image. Another lens and mirror colli-
mate the light and illuminate a second holegram with it. This ho-
logram contains the same set of stored images as the first and is
designed to produce a superposition of the four image combina-
tions. The beam bearing the superposed images is focused by a
third lens-and-mirror pair on the back of the threshold device. The
pattern of light impinging on the back of the threshold device
determines what light is reflected off its front. Since the brightest
image reaching the back of the threshold device represents the
best match to the input image from the set of stored images, it is
essentially an image of the best match that is reflected from the
front of the device into the optical loop for a second pass. Succes-
sive passes around the loop continue to enhance the best match
from the set of stored images, which can ultimately be retrieved as
the output image leaving the system through the first hologram.
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OPTICAL LENS is an inherently powerful interconnection device: it connects every

light ray that originates at a point on an object and passes through the lens with every
oint of the object’s image. Unlike wires on an integrated-circuit chip, light rays can

come close to one another and even cross without affecting one another. Hence millions

of light rays could conceivably carry data simultaneously into a processing device, where-

as electronic devices on a chip are limited to accepting input from a few wires at a time.

Because optical processing elements
communicate through beams of light,
they can be hooked up to one another
without attaching a cumbersome wire
between each pair of elements, and
they need not be confined to the re-
strictive planar configurations of sili-
con chips. Indeed, optical connections
are being considered as a means of
relieving communication bottlenecks
encountered in very-large-scale-inte-
gration chips. In such a hybrid opto-
electronic system the processing units
are electronic but the connections be-
tween them are optical, typically con-
sisting of light sources and light detec-
tors fabricated on the same chip as the
processing units.

he most promising device for es-

tablishing arbitrary optical con-
nections is not a lens but a hologram.
Holograms are best known as a means
of generating three-dimensional im-
ages, but more generally they repre-
sent an effective technique for record-
ing and reconstructing the intensity of
alight ray as well as the direction from
which it came. Whereas a convention-
al lens maps each light ray entering the
lens to a particular point on the image
plane, holograms can readily be “pro-
grammed” to allow a variety of such
mappings.

A planar hologram, produced on a
relatively thin medium such as photo-
graphic film, can direct any light beam
on one side of it to any point on the
other side, provided the total number
of points and light beams does not ex-
ceed the number of resolvable spots
on the film. The number of resolvable
spots in a one-inch-square hologram
can be as high as 100 million. This
would allow each of 10,000 light sour-
ces to be fully interconnected with
each of 10,000 light sensors. A similar
interconnection scheme by means of
wires would be extremely difficult to
accomplish on a silicon chip.
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Even more prodigious in its capabil-
ity to connect light emitters to light
detectors is a volume hologram made
from a photorefractive crystal. When
such a crystal is exposed to light, elec-
tric charges are generated in it that re-
distribute themselves according to the
pattern of the illumination’s intensity.
Because the local charge density in a
photorefractive crystal determines the
local refractive index (a measure of
how fast light travels through the ma-
terial), holographic images projected
onto the crystal are recorded in terms
of the spatially varying refractive in-
dex. The image information can then
be extracted from the hologram sim-
ply by illuminating the crystal with a
light beam.

Other hardware associated with tra-
ditional computation can also be re-
alized optically, namely switching
elements (from which processors are
constructed) and memory elements (in
which data are stored). Switching ele-
ments can be made from a nonlinear
optical material. An optical material is
nonlinear if its transmittance proper-
ties, such as its opaqueness or its re-
fractive index, change as the bright-
ness of the light incident on the medi-
um changes. Gallium arsenide is an
example of a nonlinear optical materi-
al from which two-dimensional arrays
of optical switches have been fabricat-
ed. Nonlinear optical materials make
possible the construction of an “opti-
cal transistor,” in which the brightness
of one light beam controls the trans-
mission of another light beam.

An optical memory element is es-
sentially a device that can alter an in-
put light beam into one of two possible
states, each state corresponding to a
bit of binary data (either a 1 or a 0).
Optical memories have been devel-
oped for audio and video recording
and more recently as digital mass
memories for electronic computers.
Yet in these devices the stored infor-

mation is typically accessed serially by
focusing a light beam on one stored bit
of information at a time, much as in-
formation is read off a magnetic tape.
These devices do-not exploit the huge
potential for increasing the speed with
which data can be transferred from
memory by allowing parallel access to
stored data. Millions of bits of infor-
mation could be read out and trans-
ferred at the same time merely by shin-
ing an unfocused light beam on a suit-
ably designed optical memory device
[see illustration on page 92].

The fact that designers of optical
memories have not exploited the po-
tential for parallel access to data is an
indication that most of the work in the
development of optical switching and
memory elements is done with the goal
of implementing these devices in the
execution of sequential, binary-logic
functions. Hence these optical com-
ponents would essentially duplicate
(albeit perhaps more efficiently) the
same operations that take place in con-
ventional electronic computers. Al-
though increased switching speed and
a massive memory may ultimately
result from such development efforts,
they do not fundamentally change the
mode of computation of convention-
al computers. Consequently devices in
which electronic switches and memo-
ry elements have simply been replaced
by optical analogues are just as likely
as current computers to falter when
they are confronted with pattern-rec-
ognition problems.

n order to understand why this is
so it is necessary to consider how
a conventional electronic computer
solves a problem. As we have indicat-
ed above, the classical theory of com-
putation, from which current comput-
ers were developed, is built around the
notion of algorithms. The procedure
for long division of two numbers is
a good example of an algorithm. The
procedure can be specified easily, and
once it has been mastered—whether by
a computer or by a sixth grader—it is
universally applicable: it works as well
for dividing a four-digit number by a
three-digit one as it does for dividing
a 1,000-digit number by a 900-digit
one (although the algorithm may take
longer to complete in the latter case,
particularly for the grade schooler).
Computational problems that lend
themselves to algorithmic solutions
share a characteristic property: they
are structured, meaning they can be
stated clearly and concisely in mathe-
matical terms. Most of the problems
currently being solved with computers
belong to this class of structured prob-
lems, and it is now a universal practice
for computer programmers to look for



VOLUME HOLOGRAM (on middle stand), like the more famil-
iar planar holegram recorded on photographic film, can distribute
beams of laser light in “programmable” directions. Here, for ex-
ample, two input laser beams coming from the bottom right are
turned into four output beams heading toward the top left. A vol-
ume hologram is made from a photorefractive crystal. When such
a crystal is exposed to.light, electric charges are generated in it
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OPTICAL SWITCHING ELEMENTS (leff) are manufactured
by sandwiching a nonlinear optical material (which alters its re-
fractive index according to the intensity of the light to which it
is exposed) between two partially reflecting mirrors. An element
thus constructed (fop right) can abruptly change its transmission
properties depending on the intensity of the incident light beam.
It also exhibits a so-called hysteresis cycle (bottom right) when it
is switching. As the intensity of an incident light beam is gradual-

that redistribute themselves according to the pattern of the illumi-
nation’s intensity. Because the local charge density in a photore-
fractive crystal determines the local refractive index (a measure of
how fast light travels through the material), the crystal can record
holographic images in terms of the spatially varying refractive in-
dex. Such a hologram can set up a pattern of optical connections
between light sources and detectors for each image stored in it.
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ly increased from zero (color), the element does not allow any
light through until the incident beam reaches a certain threshold
intensity; then transmission quickly rises to a maximum value.
The intensity of the transmitted beam will not retrace the same
path if the intensity of the incident beam is reduced back to zero.
Instead the abrupt change in transmission (black) now occurs at a
lower incident-beam intensity. The photomicrograph was provided
by Thirumalai Venkatesan of Bell Communication Research, Inc.
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an algorithm whenever they have to
solve a problem.

Problems such as pattern recogni-
tion in natural environments, howev-
er, lack the structure that would allow
simple algorithmic solutions. It is this
departure from the properties of struc-
tured problems and the methods for
solving them that characterizes a ran-
dom problem. The term “random,” as
we apply it here, is derived from the
mathematical concept of randomness,
namely the lack of a concise and com-
plete definition. Randomness in this

~gense is linked to the mathematical no-
tion of entropy, which can be thought
of as the amount of disorder in a prob-
lem or, equivalently, the amount of in-
formation needed to define the prob-
lem. Because a formal description of
a random problem would amount to a
listing of essentially every possible so-
lution to the problem, random prob-
lems have a much higher degree of en-
tropy than structured problems.

To better understand what it means
for a problem to be random, consider
once again our tree-recognition exam-
ple. Although it is clear to most people
what a tree is, it would be very difficult
to write down a concise definition for
a visitor from another planet, who
does not know what “branches” or
“leaves” are, or for that matter what
the color “green’” is. Even if examples

of each of these features could be pre-
sented to the alien visitor, there are
innumerable types of branches, leaves
and hues of green; a handful of exam-
ples is unlikely to be enough to cover
all possible arboreal combinations.

Among the inhabitants of the earth
a universal understanding of what is
meant by the term “tree” arises from
a vast accumulation of common expe-
rience. A computer, like an extrater-
restrial visitor, cannot draw on this
reservoir of common experience; ev-
erything must be spelled out for it pre-
cisely and unambiguously. Although
many properties of trees and other vis-
ual scenes have a fair amount of regu-
larity, there is a major component of
irregularity that does not fit any sim-
ple mathematical or algorithmic mod-
el. Any generalized definition that is
grounded on an underlying regularity
among trees runs the risk of subsum-
ing objects that are not trees. Indeed,
the only definition that would not as-
sume any prior knowledge of trees and
that would include all trees and ex-
clude all other objects would amount
to a description of all types of trees.
It is important to recognize that this
difficulty is inherent in random prob-
lems; it is not just a symptom of fuzzy
thinking by human programmers or a
poor choice of descriptions.

A simple algorithm will therefore

INPUT BEAM
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OPTICAL MEMORY DEVICES can be made from disks con-
taining embedded spots that modulate light into two possible
states. The states correspond to the value of a stored bit of binary
data (either a 1 or a 0). In most current designs (left) the stored
information is accessed serially by focusing a light beam on each
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never serve to solve a random prob-
lem, because an algorithm for the so-
lution of a random problem would be
tantamount to a definition of the prob-
lem, and hence it would have to con-
tain all the problem’s many possible
solutions. For example, an algorithm
to identify fingerprints would have to
amount to a list of all possible finger-
prints, but there is no way to pack such
a list in a few lines of computer code.
Fingerprints must ultimately be classi-
fied into a large number of basically
unrelated types—each of which must
be considered in order to identify a
given print. The solution to random
problems therefore lies essentially in
memorizing all possible solutions.

ptical technology offers a poten-

tially massive memory, but this
alone does not suffice for a practical
system to solve random problems. It
would be pointless to store the vast
data base of a random problem opti-
cally, only to search through it sequen-
tially whenever a solution that fits the
input data is needed; it would take
a prohibitive amount of time. More-
over, the input data as well as the
stored information are likely to be
incomplete or inaccurate, precluding
an exact match between them. The key
additional ingredient for a practical
system that solves random problems is

INPUT BEAM

TRANSMISSIVE OPTICAL DISK

BIT OF STORED
INFORMATION

ARRAY OF
DETECTORS

data-storing spot and detecting the reflected signal. A similar de-
vice (right) with an unfocused beam and a transmissive disk could
greatly increase the speed with which stored data is accessed:
it would scan millions of spots at a time, simultaneously reading
out and transferring the data to am array of detector elements.



a way to associate input data direct-
ly with the stored information without
requiring-an exact match.

Such & process of association is a

major feature of biological memory,
where partial features of an object
trigger the retrieval of complete infor-
mation about the object. Consider the
train of associated reminiscences that
courses through one’s mind when one
sees a familiar face: the person’s name,
one’s general disposition toward him
or her and perhaps the smell of his
cologne or her perfume—to name a
few. Similarly, human beings do not
consciously follow an explicit step-
by-step algorithm to recognize visual
scenes; rather, they follow an uncon-
scious process of association. Even in
the case of highly structured problems,
such as chess playing, experts develop
skills that are associative in nature. (In
fact, it is the inability of expert chess
players to record explicitly the “algo-
rithm” by which they made a brilliant
move that so far has prevented the
writing of a chess-playing program ca-
pable of beating world-class players.)
Can the anatomical structure of the
brain provide an organizational princi-
ple by which associations can be readi-
ly established between what is stored
in memory and the input data? More-
over, can such a model be implement-
ed by taking advantage of the intrinsic
strengths of optical technology?

The brain consists of a very large
number of neurons each of which
is directly connected to a large number
of other neurons. A neuron can be in
one of two states (known as “firing” or
“not firing”) and is able to sense the
states of its neighbors through its con-
nections. During the course of cerebral
“computation” each neuron indepen-
dently examines the states of its neigh-
bors and, based on the information,
determines its own future state. Such a
network of neurons is robust; if some
neurons malfunction, the overall func-

tion of the network is not affected. (In-,

deed, neurons in the brain are contin-
ually dying off, and yet thought and
memory are not appreciably ham-
pered.) Computation in neural net-
works is done in a collective manner:
the simple, simultaneous operation of
individual neurons results in the so-
phisticated function of the neural net-
work as a whole.

This form of organization enables
thousands of neurons to collectively
and simultaneously influence the state
of an individual neuron according to
the application of simple rules. More
important, it also allows information
to be encoded in the neural connec-
tions rather than in separate memory
elements. Each distinct piece of stored
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ARE ALL THESE OBJECTS TREES? Even a young child can answer correctly; a con-
ventional computer, however, has enormous difficulty in doing so. Although there is a fair
amount of regularity among the trees shown (each has a trunk and branches, for exam-
ple), there is also a major component of arboreal irregularity among them. A generalized
definition of a tree based on the underlying regularity could lead to erroneous identifica-
tions (such as mistaking a telephone pole, which has a “trunk” and “branches,” for a
tree). Hence any effective program designed to recognize trees would essentially have to
be a list of all types of trees, which cannot be done in a few lines of computer code.

information can be represented by a
unique pattern of connections among
neurons.

Computers whose processing ele-
ments are arranged in much the same
way as neurons are arranged in the
brain would exhibit several features
making them remarkably suitable for
the solution of random problems. For
one thing, such neural computers
would be versatile, since the connec-
tions between the elements (of which
there are a huge number) serve as the
programmable storage mechanisms
that uniquely “tune” the computer’s
memory to a given problem. Essential-
ly the connections in a neural comput-
er could be reconfigured in a great
many ways to make possible the stor-
age of a random problem’s many pos-
sible solutions.

Another major feature of the opera-
tion of neural computers is spontane-
ous learning. Imagine what it would be
like if children had to be taught how
to speak as they are taught how to car-
ry out long division, that is, by teach-

ing them a set of specific rules! Fortu-
nately this is not necessary in most
instances, since a child spontaneously
associates spoken language with an
experience. Learning to talk therefore
begins as a process of mimicking the
words heard in association with a par-
ticular experience. In this simple way
the child starts to produce recogniz-
able and sensible patterns of speech.
Similarly, the programmer of a neu-
ral computer does not have to under-
stand in a formal, mathematical sense
the problem for which he or she is
programming. The programmer only
has to provide enough “training” data
(consisting of possible solutions) to
the computer and allow it to set up a
unique pattern of connections for each
solution. In other words, it is possible
for a neural computer to program it-
self. For example, if one wanted to
program a neural computer to recog-
nize different trees, one would provide
images of trees as training, allowing
a specific pattern of interconnections
among the computer’s processing el-
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ements to be “imprinted” for each
training image.

neural computer built along these

lines from optical elements con-
sists of two main components. The
first component is a two-dimensional
array of optical switching elements to
simulate neurons; the elements switch
states depending on the states of the
elements to which they are connected.
Each element in the planar array can
be interconnected to all other neurons
by light beams. The second compo-
nent is a hologram that specifies the
interconnections among the elements.
Since the connections constitute the
memory, they must be modifiable—if
different problems are to be tackled

by a single optical neural computer.

The array of switching elements can
be made by well-established fabrica-
tion methods developed for semicon-
ducting materials. Each element can
be either a purely optical switch or an
optoelectronic combination of light
detector, electronic switch and light
emitter. The total number of possible
connections is the square of the num-
ber of elements. If a volume hologram
is used to specify the interconnection
scheme, the volume of the crystal must
be proportional to the total number of
connections.

A hologram whose volume is one
cubic centimeter can in principle spec-
ify more than a trillion connections,
which means it can handle all possible

(LE

ASSOCIATIVE MEMORY is a feature of the authors’ optical pattern-recognition sys-
tem (see illustration on page 89): the system can “recognize” an image even if only part of
it is projected into the system. If only half (a) of one of the four faces that are respective-
ly stored as edge-enhanced images (») and normal images (c¢) on a pair of holograms is
projected into the system’s self-reinforcing optical-feedback loop, the system nonetheless
selects the correct whole image (d) as output. A similar process, in which one piece of
information elicits the recollection of related stored information, is a feature of human
memory and learning. Although only four images were recorded holographically on film
in this example, a volume holograph, which has an enormous memory capacity, could
conceivably make possible the memorization and swift recognition of millions of imageAs.
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interconnection schemes of more than
a million optical elements. The ability
to store the interconnection informa-
tion in the three dimensions of a vol-
ume hologram creates a huge potential
memory for optical neural computers.
In the case of holograms used for pat-
tern-recognition systems, for example,
the interconnection scheme can easily
be set up by making a hologram of all
the images that are to be identified.

Several experiments are under way
in our laboratory at Caltech to devel-
op such optical neural computers. In
one experimental setup [see illustration
on page 89] the action of a two-dimen-
sional array of more than 10,000 neu-
rons is simulated by a threshold device
consisting of 10,000 tiny elements that
switch the reflectivity of their front
surface whenever the intensity of a
light beam hitting their back surface
is greater than a certain threshold. In
this sense the threshold elements act
as neurons because they switch states
depending on whether enough light
reaches them from behind. A pair of
planar holograms, a system of lenses
and mirrors and an array of pinholes
specify how much light each threshold
element gets, in essence establishing
the interconnections among the ele-
ments. Both holograms contain the
same set of images, although the edges
of the images stored in one hologram
have been enhanced. The system is
arranged in the form of an optical
“loop” so that the system has continu-
ous feedback.

An image to be recognized is pro-
jected into the system by reflecting it
off the front of the threshold device.
Lenses, mirrors and the pinhole array
enable the reflected input image to in-
teract with all the images stored in the
two holograms in such a way that the
best match between the input image
and the stored holographic images is
the brightest image issuing from the
second hologram. The light from the
second hologram is then directed to
the back sutface of the threshold de-
vice, causing individual threshold ele-
ments to change their reflectivity so
that an image of the best match is pri-
marily what is refiected off the front
of the device for a second pass around
the loop. Successive passes around the
loop continue to reinforce the best
match until the system ‘“locks” onto
the correct stored pattern, which can
be retrieved as the output image. In
this way the system is capable of rec-
ognizing any one of the stored im-
ages—even if only part of the image is
projected into the system.

< .

B \)Cfe believe the best Wayrto"design

V¥ . computers that solve random
problems is through the implementa-



tion of a neural architecture. Optical
technology ¢an be applied amazingly

well in building such-a computer. A.

neural computer demands avery large
number of switches, each of which
~must perform only a simple operation
in order to switch between two states.
Similarly, it is possible to place a large
number of simple optical switching el-
ements on a plane. A neural comput-
er requires extensive connectivity and
data communication. Similarly, holo-
grams can establish the necessary con-
nections between numerous optical el-
ements. Because light rays can cross
one another without interfering and
are not limited to traveling along the
two dimensions of the surface of a sil-
icon chip, simultaneous.communica-
tion among numerous optical ele-
ments is readily achieved.

Although optical systems are vul-
nerable to various inaccuracies and lo-
_ cal errors, neural computers are inher-

ently fault-tolerant: a perfect match
between input and output is not nec-
essary. A neural computer would be
programmed by establishing a unique
interconnection pattern for each solu-
tion, and this could easily be done by
recording various training images on a
photorefractive crystal or photograph-
ic hologram. In contrast to conven-
tional computers, the speed of the
individual switching elements is not
critical for the function of a neural
computer, since a few iterations usual-
ly suffice to complete the association
function. This is particularly fortunate
for optical neural computers, since
each firing of a “neuron” consumes a
fixed amount of energy and speeding
up translates directly into more power
consumption and hence into excessive
heat production.

Clearly many challenges must be
met before optical hardware, arranged
in a neural architecture, can produce
practical computers that are capable
of dealing with random problems. Ad-
vances in optical materials and man-
ufacturing technologies and in the
understanding of the organization of
large-scale neural computers are need-
ed. Equally important is better under-
standing of the operation of neurons in
the brain and of how they collectively
“learn” and “classify” patterns.

Engineers, computer scientists and
mathematicians have reached signifi-
cant turning points in three seemingly
unrelated areas: optical components,
neural computers and random prob-
lems. There is good reason to believe
that, with progress in each of these ar-
eas, their interaction will ultimately
yield systems capable of pattern recog-
nition and other artificial-intelligence
tasks that may never be duplicated by
purely electronic means.
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