
W
hy is an elephant big, dark and
strangely shaped?Ó the ques-
tion goes. ÒBecause if it was

small, white and round, it would be an
aspirin.Ó This answer may ring funny to
human ears, but it could well prove in-
formative to a computer trying to iden-
tify such objects as elephants or aspirin.
Knowledge we commonly take for grant-
ed is not available to machines unless
carefully spelled out. For machines,
learning is not at all simple.

Despite the challenges, machine learn-
ing is one of the fastest-growing tech-
nologies today. The past few years have
witnessed an explosion of applications,
ranging from automated reading of
handwritten zip codes at the post oÛce
to predicting seat demand in the airline
industry. Indeed, the last time you re-
ceived a credit card from a bank, chanc-
es are it was approved by a machine
that learned on its own how to evaluate
credit risk. And the future of machine
learning is on the rise.

Designing a computer program to
handle a particular job almost invariably
demands a thorough understanding of

that task and its solution. Machine learn-
ing therefore has a fundamental appeal.
Instead of devising a specialized pro-
gram, one could merely provide train-
ing examples to a versatile machine that
would learn on its own. 

A self-learning credit-card approval
system would, for instance, use histori-
cal data about ÒgoodÓ and ÒbadÓ cus-
tomers to judge applicants. The ma-
chine does not care about the details of
the problem. All it does is take matched
pairs of inputs ( in this case, personal
information) and outputs (credit behav-
ior) and absorb whatever information
their relation contains. The trained ma-
chine then serves to evaluate new ap-
plicants. This kind of procedure takes
automation one step further than nor-
mally envisaged. It not only applies a
computer to a repetitive task, it auto-
mates the very problem of designing a
system to perform that task.

One can, in principle, apply the meth-
odology of machine learning to a wide
array of problems. If, however, the in-
put-output examples available lack vi-
tal information, the machine may fail
to acquire proÞciency. Fortunately, one
can often append the needed informa-
tion in the form of an intelligent hint.
The hints used in machine learning
range from simple observations to so-
phisticated knowledge. 

In computer-vision applications, for
instance, in which the goal is to recog-
nize objects, there are many invariance
hints. These assert that an object re-
mains the same object when it shifts
position in the range of view or changes
in size. In Þnancial-market applications,
there are many monotonicity hints,
which state that if an input consistently
shifts in one sense or direction, the out-
put must also consistently move just
one way. Each particular application
has its own hints that can aid the learn-
ing process.

If one knows enough about a given
application to oÝer hints, why bother
with machine learning in the Þrst place?
Why not employ this knowledge to de-
sign a specialized machine for the job?
In some instances one can do so, but
the fact of the matter is that usually too
little is known about a problem to spec-
ify a method for its solution according
to a well-deÞned set of rules. 

Applications range between two ex-
tremes: structured problems that are
totally deÞned and require no examples,
and random problems that are com-
pletely undeÞned and depend entirely
on training examples for their solution.
Machine learning using intelligent hints
is the way to handle the vast middle
ground.

Machine-Learning Paradigm

How do machines learn? Many dif-
ferent models for machine learn-

ing have been devised. Typically the im-
plementation used will have a general
structure that is broadly tailored to the
problem, but it will also have many free
parametersÑthese might be thought of
as the knobs and dials for tuning the
machine. The values given to these ad-
justments determine how the machine
will ultimately act; diÝerent settings will
produce completely diÝerent results.

The behavior of a machine can be
viewed mathematically as a function
that associates input values (the specif-
ics of a problem to be solved) with cor-
responding output values (the decision
or action to be made). The goal in ma-
chine learning is to make the machine
emulate the target function, the desired
mapping of inputs to outputs. We can
use training examples from the target
function to guide the selection of values
for the machineÕs free parameters. With
each example, the machine reÞnes its
internal settings so that it matches the
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Machines That Learn 
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Machine learning improves significantly
by taking advantage of information 

available from intelligent hints
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CAN YOU SOLVE IT? These objects have been sorted into two
classes, indicated by either a blue or brown border. Which
characteristic distinguishes them? Computers programmed

to learn from examples often face similar puzzles. Providing
the machine with hints can make learning faster and easier.
For a hint to help with this puzzle, turn the page.
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inputs and outputs appropriately. When
the machine reaches a setting that cor-
responds as closely as possible to the
target function, it will have in eÝect
ÒlearnedÓ it. Machine learning is simply
the search for the right positions for
the knobs. Because the search is guid-
ed by the training examples, this para-
digm is called, naturally enough, learn-
ing from examples.

The most widely applied form of such
machine learning is the neural network
[see ÒHow Neural Networks Learn from
Experience,Ó by GeoÝrey E. Hinton; SCI-
ENTIFIC AMERICAN, September 1992].
Neural networks were inspired by the
power of real neurobiological systems.
They consist of many computational
elements interconnected in such a way
that each elementÕs output reßects in-
puts from a number of other elements.
The adjustable parameters of a neural
network are called synaptic weights 
after their biological counterparts, the
synapses that connect nerve cells in
the brain. The ßexibility of neural net-
works and the simplicity of their train-
ing have made them the machine-learn-
ing model of choice for the past 10
years; neural networks now Þnd uses
in a broad range of machine-learning
applications. Although specialized elec-
tronic and even optical networks have
been built [see ÒOptical Neural Comput-
ers,Ó by Yaser S. Abu-Mostafa and De-
metri Psaltis; SCIENTIFIC AMERICAN,
March 1987], in most cases, one imple-
ments a neural network simply as a
program running on a personal com-
puter or workstation.

With all the training required, we
might imagine the need for tedious late-
night sessions at the computer, super-
vising the machine as it learns. Fortu-
nately, responsibility for Þnding the op-
timal adjustments usually falls on a
learning algorithm, a method that re-
duces the process to a series of simple,
repetitive steps that the computer can
perform independently. One of the
most common learning systems in use
today is the back-propagation algorithm
for training neural networks. This tech-
nique was popularized primarily by Da-
vid E. Rumelhart while at the Universi-
ty of California at San Diego. 

Back-propagation uses simple calcu-
lus to decide how to change the param-
eters of the neural network. It takes a
training exampleÑan input and its cor-
responding outputÑand makes small
modiÞcations to the network parame-
ters to minimize the diÝerence between
the current response of the network and
the target response. This step is repeat-
ed over and over, each time nudging the
network a bit closer to the desired eÝect.
After going through all the examples
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VISUAL HINT aids both machines and people in solving the puzzle. Drawing the
axis makes it clear that the top six objects lack the mirror-image symmetry exhibit-
ed by the bottom three. This characteristic distinguishes brown and blue categories. 

INVARIANCE HINTS can help machines recognize that objects do not lose their
identity when viewed in a new way. A machine attempting to identify trees, for in-
stance, would not inherently know that size and position did not matter (top).
Training on ÒvirtualÓ examples of quite different subjectsÑsuch as a face or a
chairÑcould prompt the machine to grasp these principles.
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several times, the network
can replicate the target func-
tion reasonably well.

Let us see how this might
work for credit-card approv-
al. An input-output example
in this case would be the
data supplied by an appli-
cant (such as age, salary and
marital status) and her even-
tual credit performance
(whether the bank proÞted
or lost in extending credit). A
neural network that approves
credit cards would ideally
predict a personÕs later be-
havior just by looking at the
data provided by the individ-
ual. To learn this function,
the network takes thousands
of cases of real peopleÕs ap-
plications and credit behav-
ior, and it keeps modifying
its internal parameters in an
attempt to match its output
with these historical records. 

Some of the variable para-
meters may be concerned
with the salary and would
move the network toward ap-
proving people who earn more. Others
may be concerned with a combination
of age or marital status, favoring par-
ticular combinations of these attributes.
Eventually, a Þnal setting is reached that
makes the network produce the right
response with as many training exam-
ples as possible. Now the network can
be used to grade a fresh application by
extrapolating from its ÒexperienceÓ to
predict how the new customer will be-
have with credit.

Learning with Intelligent Hints

Whether implemented as a neural
network or in some other way, all

machine-learning methods share this
same fundamental premise of learning
from examples. For the machine to
learn successfully, it must be able to
generalize from the limited input-out-
put samples on which it was trained. Do
the training examples convey enough in-
formation for the machine to respond
properly to novel inputs? Perhaps not.
Because the machine does well on the
training examples does not necessarily
imply it will do equally well on some-
thing it has never before encountered.

Remember that a machine knows
nothing about the function it is trying
to learn except what it sees in the train-
ing data. If the data are deÞcientÑ
there may be too few training examples
or too much irrelevant information con-
tained in themÑthe machine will not
generalize properly. Or the examples

may not encompass all the important
information. Suppose, for instance, that
I want to train a machine-vision system
to recognize trees. I may not be able to
specify how to identify a tree in exact
mathematical terms, so I cannot struc-
ture the problem and give the machine
rigid rules to apply. If I simply show the
machine pictures of trees and objects
that are not trees, I am giving it infor-
mation, but I am still not telling it every-
thing I know. For instance, I know that
a tree remains a tree if it is shifted a lit-
tle or rescaled. People intuitively realize
that much, but the machine does notÑ
unless speciÞcally told so. Without
hints, the machine might take a very
long time, if ever, to reach that form of
Òunderstanding.Ó

Even the simplest hint can boost
learning. As in a game of 20 questions,
in which the answers to some elemen-
tary questions can narrow the search
signiÞcantly, a few hints may make the
diÝerence between learning a function
and not learning it at all. To take ad-
vantage of this situation, I introduced a
formalism called learning from hints
some six years ago, and it has since be-
come a feature of many learning sys-
tems. The most notable achievements
of this approach are in automated trad-
ing systems for Þnancial markets and
in systems for handwritten character
recognition.

The credit-card-application problem
can also beneÞt from intelligent hints.
Admittedly, it is diÛcult to deÞne ex-

actly what makes a person a
good credit risk, but one hint
is obvious: if two people are
identical except that one
earns less money than the
other, and the machine ap-
proves credit for the lower-
paid person, it must also ap-
prove credit for the higher-
paid one. This is one of many
possible monotonicity hints.
While the machine is learn-
ing, it should set its free pa-
rameters in such a way that it
matches inputs and outputs
according to the target func-
tion but simultaneously sat-
isÞes such hints.

One application of learning
from hints that my colleagues
and I conducted in our Learn-
ing Systems Group at the Cal-
ifornia Institute of Technolo-
gy is in the area of foreign-
exchange trading. We ran a
machine-learning experiment
to forecast the exchange rates
for the U.S. dollar against four
major foreign currencies. We
wanted to test whether the

resulting trading system would be more
proÞtable when we injected a common-
sense hint into the learning process.
The hint we used reßected a symmetry
that was obvious to us: if a given pat-
tern in the price history implies a cer-
tain movement (up or down) in U.S.
dollars compared with a foreign curren-
cy, the foreign currency should move
the same way if that pattern emerges
in its own price history. The results of
the experiment were quite successful.
In all four markets, the symmetry hint
brought the system a consistent in-
crease in proÞt.

To assure that the improvement in
our neural-network program came from
information contained in the symmetry
hint, we tried to fool the machine with
two alternatives. The Þrst was an unin-
formative hint, giving the machine ran-
dom pieces of information. To our sat-
isfaction, the machine did not beneÞt.
Performance was about the same as
when there was no hint at all. Next we
fed the machine a hint that provided
deliberately erroneous information. Per-
formance then deteriorated rapidly, as
would be expected. The intelligent hint
had truly helped.

Implementing the Hints

The main challenge to using hints in
machine learning is in automating

the process. Hints come in various guis-
es; they range in character from subtle
to glaringly obvious. How can one algo-
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MACHINE LEARNING involves adjusting a systemÕs internal
parameters such that it makes the proper associations be-
tween data inputs and desired outputs. A credit-approval
system, for example, would be trained to link applicantsÕ
personal data with their known credit behavior. In eÝect, the
learning process Òtunes the dialsÓ until the machine can du-
plicate the input-output relations in the training examples.
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rithm orchestrate learning from all the
varied pieces of information encom-
passed by such hints?

First, all the representations of hints
must be standardized to enable the
learning algorithm to deal with them
on equal footing. The clue for the prop-
er way to accomplish this end comes
from the representation of the target
function itself: as input-output exam-
ples. What one is telling the machine is,
ÒWhen we input so and so, you should
output such and such.ÕÕ The identity of
the input-output examples completely
distinguishes one target function from
another. Similarly, if we could represent
each of the desired hints by a set of ex-
amples, it would not matter what type
of hint we wanted to introduce.

To represent the monotonicity hint in
credit-card approval, an example might
take the form of two persons with iden-
tical data except for salary. When the
applications of both are presented to
the machine, its responses may agree
with the hint (by approving or denying
credit to both or by approving only the
higher-salaried applicant), or it may dis-
agree (by approving only the lower-sal-
aried person). The learning algorithm
can adjust the machineÕs parameters to
satisfy the hint, exactly as though it
were incorporating one more example
of the target function. Learning from
hints in this way can therefore piggy-
back other learning mechanisms.

Remarkably, the examples represent-
ing the hint need not be real. The two
applicants with diÝerent salaries could
be hypothetical, or Òvirtual,Ó cases. We
can use virtual examples because we are

not requiring the machine to make the
correct decision about a real person but
rather to act in a way that is consistent
with the hint. This principle can also
apply to the symmetry hint in foreign
exchange; virtual examples can be con-
structed from price patterns that never
occurred in history. For the task of com-
puter vision, we can represent invari-
ance hints using pictures of objects that
are completely unrelated to the real tar-
get function. Our training for this hint
does not require that the machineÕs out-
put be right or wrong, only that it re-
main consistent as the input pattern
shifts or changes in size.

Virtual examples are extremely im-
portant in many applications because
they can add substantial information
to what may be a meager set of train-
ing examples. In foreign-exchange fore-
casting, for instance, the real data are
limited to a small set of recent price
patterns. The ability to supplement this
scant historical data with virtual exam-
ples is thus of great value. The remain-

ing challenge is to Þnd a learning algo-
rithm that can achieve the proper bal-
ance between the hints and the real in-
put-output examples.

The Balancing Act

Alearning algorithm will strive to ad-
just the parameters of the machine

to agree simultaneously with the entire
training set and with all the examples
of each hint. But a perfect solution is
normally impossible, so some compro-
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RECOGNIZING A FACE from any angle becomes easier with a
symmetry hint. A naive machine, knowing nothing about hu-
man faces, would need many views to learn how to master
this task (top). A hint that faces are symmetrical (bottom) al-

lows generalization from a smaller number of angles. Animals
may rely on an innate understanding of such a hint: monkeys
can be taught to recognize a face more reliably if they mem-
orize it Þrst from an oblique angle rather than a frontal view.

FOREIGN-EXCHANGE trading systems
improve with symmetry hints. For in-
stance, if the value of the dollar rises
relative to the deutsche mark when a
certain pattern appears in its price his-
tory, the mark should rise in the same
way when its history shows that pat-
tern. A neural-network program for for-
eign exchange that was provided with
this hint performed more proÞtably
than did machines supplied with either
an uninformative hint, an erroneous
hint or no hint.
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mise must be found. To achieve this
goal, the machine needs to assess how
much agreement exists at each step.
During the training process, some hints
may be learned better than others. But if
the computer can determine which hint
is least well learned, it can pay more at-
tention to it in the next iteration. This
is the concept behind Adaptive Mini-
mization, an algorithm I developed that
schedules diÝerent hints for learning
in a way that achieves a balance among
them and with the training set.

The Adaptive Minimization algorithm
is ÒadaptiveÓ in the sense that it con-
stantly evaluates how well the machine
is satisfying both the hints and training
examples, and it continually modiÞes
the adjustable parameters. The term
ÒminimizationÓ reßects that the algo-
rithm is trying to minimize a quantita-
tive measure of the error between the
current actions of the machine and the
behavior ultimately desired for it.

Although I began work in this area
with many of the basic ideas in mind, I
have to admit that my Þrst breakthrough
came from necessity rather than spon-
taneous insight. I had been invited to
present the hints framework at a scien-
tiÞc meeting, and only the day before
did I Þnd out that the seminar was
scheduled to be 10 minutes longer than
I had anticipated. The thought of facing
my audience with an embarrassingly
short lecture kept me up all night trying
to see if I could expand on the algorith-
mic part of my talk. That evening the
main idea of the Adaptive Minimization
algorithm came to me; the next day I

delivered it in a well-received lecture. I
doubt my audience appreciated just
how recent those results were!

Learning Impediments

There are many challenges still fac-
ing the technology of machine learn-

ing. Perhaps the most severe faults
stem from the tendency of machines to
ÒoverlearnÓ from training examplesÑ
something that can compromise a ma-
chineÕs ability to function correctly.
Overlearning takes place when the ma-
chine memorizes the training examples
at the expense of generalization. You
might encounter a similarly ironic situ-
ation if you travel to Egypt and take a
tour of the Pyramids. Some local guides
provide an elaborate narrative for the
tour, in English, and can answer com-
mon questions about the pharaohs per-
fectly. If you are encouraged by this
performance and further query them,
you will be surprised to Þnd out that
they do not speak English! They have
memorized the necessary English sen-
tences for a tour, but they have not
ÒgeneralizedÓ at all. Machine learning
can suÝer the same fate.

Another common pitfall in more com-
plex machine-learning problems is a re-
quirement for excessive computation
time. As the learning algorithm search-
es for the optimal settings of free pa-
rameters (called the global optimum),
it sometimes gets trapped in a poorer
conÞguration (called a local optimum)
that is better than similar solutions but
still not the best that is theoretically

possible. There is no eÛcient way for
avoiding local optima in general. Some
learning tasks have been shown to be
NP-complete, a technical term that char-
acterizes a class of computational prob-
lems believed to require excessive
amounts of computer time to Þnd the
global optimum. In practice, however,
the problem has not been debilitating.
Satisfactory performance usually re-
quires only that the machine reach a
good local optimum.

Despite the existence of such diÛ-
culties, machine learning has proved it-
self worthy in solving a wide array of
real-world problems. It is a classical
subject rooted in research carried out
many decades ago, but it has been reju-
venated and expanded in recent years.
With the addition of procedures for
learning from hints and other technical
advances yet to come, machine learn-
ing will undoubtedly continue to make
its way into our daily lives.
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